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Introduction

Carole B. Lacampagne

Sponsored by the U.S. Department of Education's Office of Educational Research

and Improvement, the Algebra Initiative Colloquium was held December 9-12, 1993, in

Leesburg, Virginia (see the Agenda, appendix Al. The Colloquium addressed specific

issues in the algebra curriculum and its teaching and learning. Algebra was chosen from

among the many subject areas of mathematics because algebra is the language of

mathematics; it is central to the continued learning of mathematics at all levels. Moreover,

although several groups are already at work on the reform of algebra, there has been little

dialog bridging educational levels. The Algebra Initiative Colloquium fostered such dialog

(see the Conceptual Framework for the Algebra Initiative of the National Institute on

Student Achievement, Curriculum, and Assessment, appendix B).

Fifty-one distinguished algebra teachers, mathematics education researchers,

algebraists, and mathematics experts from federal agencies attended the Colloquium (see

List of Participants, appendix CI. In addition to hearing and discussing the plenary and

reactor addresses, participants were assigned to one of four working groups to debate the

issues and, where possible, to come up with recommendations. The working groups and

their foci are listed below:

Working Group 1: Creating an appropriate algebra experience for all grades K-12

students;

Educating teachers, including K-8 teachers, to provide these

algebra experiences;

Reshaping algebra to serve

workforce; and

Renew'ng algebra at the college level to serve the future

mathematician, scientist, and engineer.

Prior to the Colloquium, working group participants wrote short papers on their

group's focus area and shared papers within the working group, thus getting a head start

on Colloquium deliberations. These papers, revised after the Colloquium, together with

Working Group 2:

Working Group 3:

Working Group 4:

)e evolving needs of the tech

1
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recommendations from each working group and a summary of Colloquium discussions

appear in this volume. Plenary and reactor papers appear in the companion publication,

The Algebra Initiative Colloquium, Volume I.

A short document for teachers and policymakers was prepared on the basis of

recommendations from the Colloquium. This document, Algebra for All: A Lever, nit a

Wedge, will soon be available through the National Institute on Student Achievement,

Curriculum, and Assessment.
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Summary
Carole B. Lacampagne

Sponsored by the U.S. Department of Education, The Algebra Initiative Colloquium

generated a number of questions, concerns, and recommendations to promo.e the reform

in algebra across the educational gamut, K through 16.

According to Lynn Steen, "The major theme of this conference is very simple:

Algebra is broken but nonetheless essential." From this premise, several

subthemes/questions/concerns emerged that might be considered in setting an algebra

agenda. These include:

Algebra, the new civil right;

The chasm that separates K-12 arid 13-16 algebra education;

A new algebra curriculum and pedagogy for preservice teachers and support

and practice for current teachers;

Algebra for the technical wor' force;

The story line of algebra; and

The brick wall.

Algebra, The New Civil Right

As Robert Moses so eloquently put it, "Algebra is the new civil right." Working

Group 1 (Creating an appropriate algebra experience for all grades K-12 students) calls

algebra "... the academic passport for passage into virtually every avenue of the job market

and every street of schooling." Moreover, since students from non-Asian minority groups

are less likely to have obtained this passport than others, algebra becomes an equity issue.

Working Group 1 recommended that all students have sigi..ficant experiences in

algebra before the end of grade 8 and that these experiences be the equivalent of current

ninth-grade algebra. They also recommended that these experiences be strands that flow

through K-8 mathematics.

Algebra for all is a bold statement. As keynote speaker Victor Katz pointed out,

algebra has a history of being an elitist subject meant for the education of future priests or

leaders. Many of the story problems found in current high school algebra texts date back

3
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to antiquity and are artificial, not real-life problems. If we are to implement algebra for all,

we must overcome this longstanding elitist tradition.

A question that plagued Colloquium participants was, "How do we insure that

'algebra for all' is not 'dumbing down' algebra?" The mathematical community as well as

parents of college-bound students will and should demand sound preparation in algebra for

the college bound. We will be faced with building an algebra curriculum and pedagogy that

will support the needs of all students.

Integrating algebra into the K-8 mathematics curriculum was also a topic of

considerable interest to Colloquium par icipants. Such integration would eliminate algebra

from its current gate-keeper function, for algebra would be learned over a period of 8

years. The college death knollfailing algebrawould no longer exist. Moreover, many

countries already integrate algebra into their K-8 curriculum through the use of a strands

approach; that is, each year a strand of algebra as well as strands of arithmetic and

geometry are taught. Several curriculum projects in the United States have developed or

are developing such an approach. These curriculum projects need to be tested in

classrooms to prove their effectiveness, and promising practices need to be disseminated.

Several participants were concerned that we do not know enough about how

children and adults develop algebraic concepts. More research is needed on how algebraic

concepts are developed. Findings from this research should then be c insidered when

designing algebra curriculum.

Looking to the future when algebra could be folded into the K-8 curriculum raised

several questions:

What do we do with ninth-grade mathematics once algebra has been learned

by eighth grade? How do we prepare for such change?

Now do we influence public policystate legislators, boards of education?

State legislators and boards of education must adjust their ninth-grade

mathematics requirements to the new curriculum. Now do we get parents to

buy into this new alignment?

The Chasm That Separates K-12 and 13-16 Algebra Education

It became disturbingly apparent as the Algebra Initiative Colloquium progressed that

mathematicians involved with research in the learning and teaching of algebra at the K-12

level seldom talk with those involved in algebra at the 13-16 level.

11
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Working Group 4 (Renewing algebra at the college level to serve the future

mathematician, scientist, and engineer) suggested several areas in which further dialog

was needed between K -1 2 and 13-16 people to:

Lay the basis in high school for some important ideas from linear and

abstract algebra;

Find new ways to engage students in linear and abstract algebra;

Develop places across the entire algebra experience to expose students to

the use of proof; and

Search for the "big themes" which run throughout the algebra experience.

Initiatives for getting this dialog going are already under way, thanks to the

groundwork laid at the Colloquium.

A New Algebra Curriculum and Pedagogy for Preservice Teachers and
Support and Practice for Current Teachers

Reform in the school algebra experience necessitates a change in the algebra

experiences of pre- and in-service mathematics teachers. Questions wrestled with by

Working Group 2 (Educating teachers, including K-8 teachers) to provide these algebra

experiences included:

How do we help elementary school teachers gain the knowledge,

pedagogical skills, and desire to integrate algebra into the K-8 curriculum?

How can we prepare parents and communities for this new approach?

How can we encourage mathematics and mathematics education faculty at

the college level to model the pedagogy we wish to see prospective teachers

use in the schools?

What experiences with mathematical modeling should pre- and in-service

teachers have in order to teach algebra effectively?

Working Group 2 believed that all teachers of pre-college algebra (K-12) need an in-

depth understanding of numeracy and quantitative reasoning. They should also have a

working knowledge of how to use technology in instruction and how to access real-world

examples that employ algebra. They should possess a belief in the value of mathematics

and a commitment to the development of algebraic thinking for all students.

5



Algebra for the Technical Work Force

Working Group 3 had several recommendations for reforming the K through 14

mathematics curriculum and teaching, including that all students should study the same

mathematics through grade 11, with algebra playing a significant part in the curriculum.

Moreover, they saw mathematical modeling as a central or organizing theme for school

mathematics. These recommendations led to such further concerns as:

What should be the common mathematics curriculum required of students

through grade 11?

What alternative mathematics courses should be taught in grade 12?

How do we mount a serious study of what algebra/mathematics is used in

technical jobs?

How do we remediate the remedial mathematics programs in our colleges?

How do adult learners best learn algebra?

Currently, we.teach content, then application. If mathematical modeling were

our focus, we would teach applications then content on a need-to-know

basis. Can or should we embark on such a radical change?

How can we begin to work with the vocational/technical education

community to provide a meaningful algebra experience in all its programs?

The Story Line of Algebra

At the Colloquium, participants had trouble identifying the "story line" of algebra.

Specifically, Bob Moses challenged us to describe what (high school, linear, or abstract)

algebra is and why a student should study it. If algebraists and teachers of algebra cannot

explain to each other what algebra is a about, how can we expect to engage prospective

students, their parents, and the community in the study of and support for algebra?

Participants felt that the mathematical community must be able to answer such questions

and to communicate thesz., answers to the public at large.

The Brick Wall

Working Group 4 spent much time deliberating on how to confront the "brick wall";

that is, how to help students through their first proof course (usually abstract algebra).

They discussed the possibility of starting a dialog, perhaps in a journal like The American

Mathematical Monthly, on how to help students over (around) the brick wall and on

6



sharing concrete examples and problems in abstract algebra among those who teach

abstract algebra.

The big problem that this group wrestled with was how to reconcile the need for

formal proof at the coliege level with the trend to downplay formal proof in the schools in

favor of communicating ideas and understanding.

Participants at the Algebra Initiative Colloquium made a good start in identifying

problems in the learning and teaching of algebra at all levels. They made several

recommendations to help solve these problems. But many questions they raised remain

unanswered. It is hoped that federal agencies working with leaders in the mathematical

community will provide leadership in renewing algebra to meet the needs of the 21st

century.

7
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Report of Working Group 1

Alan Schoenfeld
University of California, Berkeley

This report is written in the context of a series of conferences and reports, spanning

better than a decade, urging the reconceptualization of what is taught as algebra in this

nation's schools. (See, e.g., the reports Algebra for Everyone [1990) and Algebra for the

Twenty-first Century 119921 from the National Council of Teachers of Mathematics

[NCTM].) To pick just one group whose recommendations are similar to ours, we note that

the NCTM's Task Force on Algebra urged the development of a national consensus vision

statement with regard to algebra. The working definition of the Task Force is that

"Algebra is a study of patterns/relationships and functions which uses a variety of

representations including verbal, tabular, graphical, and symbolic. These representations

make it possible to: use technological tools effectively; communicate, analyze, and

interpret information; formulate and solve problems by collecting, organizing and modeling

data; describe important patterns of behavior of families of functions; land] recognize,

interpret, and use discrete and continuous relationships." The Task Force's vision

statement included the following non-negotiable principle: "A national goal that every

student will graduate from high school with the algebraic skills and knowledge necessary

to function in our technological society;" also that "algebra will become a K -1 2 strand"

(rather than being isolated in a single year's instruction, typically ninth grade). [Reference:

Betty Phillips' conference paper, page 10.] We begin tl-is report with an affirmation of

those statements of principle.

All Students Must Study Algebra

There is a new literacy requirement for citizenship. Algebra today plays the role

that reading and writing did in the industrial age. If one does int have algebra, one cannot

understand much of science, statistics, business, or today's tectmology. Thus, algebra has

become an academic passport for passage into virtually even avenue of the job market

and every street of schooling. With too few exceptions, students who do not study

algebra are therefore relegated to menial jobs and are unable often even to undertake

11
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training programs for jobs in which they might be interested. They are sorted out of the

opportunities to become productive citizens in our society.

The study of algebraic ideas must pervade the curriculum. It must not be localized

into one or two intense, decontextualized courses in symbol-manipulation techniques

during middle and secondary school. Rather, as elaborated in recommendations 1 and 2,

the study of algebra must begin early in the curriculum, and increase consistently through

the years.

Recommendation 1: All students should have significant experiences in algebra (totaling at

least one year of work) before the end of grade 8.

This recommendation represents a significant departure from current practice, and a

significant challenge. It follows, first, from the goal statement above. In the most recent

National Assessment (1992) about 81 percent of 17-year-olds reported having taken at

least a semester of algebra in school. To provide the relevant skills for the rest of the

students (largely those who have been shunted into courses in remedial mathematics, or

those who drop out of school) requires that we reach them earlier in their school careers.

But this is not "only" an issue of equity; it is an issue of providing relevant skills for all

students, when they are ready to learn them. While the traditional algebra course may

seem to represent, for reasons of familiarity, the way things "must be," the fact is that

such a course is an American anomaly: the rest of the world has not had a separate, 1-

year, high school course in algebra. Indeed, in other countries, where (traditional) algebra

is taught earlier, more students seem to be successful. Because algebra is very much a

language, like other languages it is better learned earlier and harder to learn when one is

older. In addition, when students start earlier, the learning of algebra can occur over a

longer period of time, with all the advantages that greater time exposure allows. The

technical aspects of current algebra courses that serve as barriers for students, such as

very complicated symbolic manipulations, can (and should) be done with the help of

technology. We have ample evidence that the use of contextual situations makes it easier

to approach algebra. Furthermore, if one begins earlier, the unfortunate role of algebra as a

sorter will necessarily be diminished, because all students are in school and there is less

tradition of separating students.

12
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Exactly how these experiences should be designed is open lo study. Mathematics

curricula in other countries and current NSF-funded curriculum projects can provide a start,

but some more specific curricular efforts in algebra at the K-8 level would be appropriate.

What Algebraic Understandings Should Students Develop?

Recommendation 2: All students need to learn the following aspects of algebra:

The representation of phenomena with symbols and the use of these

symbols sensibly;

The use of variables to describe patterns and give formulas involving

geometric, physical, economic, and other relationships;

Simple manipulations with these variables to enable other patterns to be

seen and variations to be described;

The solving of simple equations and inequalities and systems by hand and of

more complicated equations and inequalities and systems by machine; and

The picturing and examination of relationships among variables using graphs,

spreadsheets or other technology.

If we describe mathematics as the study of numerical, geometric, logical, and

structural patterns, then the overarching reason for the study of algebra is that algebra is a

powerful language in which patterns from all of mathematics are described. It is a

powerful means of expression that reflects and helps to structure the use of logic and

abstraction, which are valuable mathematical "habits of mind."

A major aspect of algebra is the representation of a situation in algebraic or other

symbolic form, and operating on the symbols in a way that makes senseboth with regard

to the symbols themselves, and with regard to the situations being represented. The

development of symbol sense, and of representational capacities, are among the main

goals of algebra instruction. Symbol sense includes such ideas as: 2n is twice n; if you are

of age A, the age of your parent who is 25 years older than you is given by A + 25; if this

section contains n words and the next section contains m words, then they contain m +n

altogether; when area = length X width and the width is multiplied by some quantity, so is

the area. At more advanced levels, it includes having an understanding of notions such as

commutativity, not only in symbolic terms but in meaningful applicationsfor example, in

noting that certain universal replacements made while using a text processor arc not

commutative, while others are, and acting accordingly.

13
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The patterns of algebra (should) begin in the early elementary schoc.! when students

(should) learn that one can add two numbers in either order and obtain the same sum; in

algebraic language, that a + b = b + a. This algebraic description of the general pattern

has three advantages over verbal or visual descriptions. First, it looks like the specific

instances 2 + 3 = 3 + 2 or, later, 12 + 38 = 38 + 12. Second, it is shorter, with no

unnecessary words or symbols. Third, the algebraic objects themselvesthe variables a

and hcan be manipulated to relate old rules and to form new rules. For example, the

Distributive Property alb + c) = ab + ac can be extended to the multiplication of

binomials (a + b)(c + = ac + ad + be + bd, and both properties can be used to do

mental arithmetic.

Because calculators can and should do virtually all of the complicated arithmetic

that students have been asked to do in schools, knowing these patterns (e.g., knowing

when addition and multiplication can be done in any order, or knowing when two divisions

can be combined into one) is critical for intelligent use of these machines.

The patterns continue through elementary school when students (should) learn

formulas for the perimeters, areas, and volumes of common figures, and when they learn

that the physical and economic world around them is described in the language of

mathematics. Area formulas require a knowledge of squares and square roots; volume

formulas require cubes and cube roots; compound interest and population growth require

the algebra of exponents more generally; the descriptions of orbits of thrown or propelled

objects involve quadratics. All of these help the student understand that the world around

them has regularities with predictable consequences, and help the student learn to live in

that world.

It is often the case, when dealing with formulas, that some of the quantities are

known and others are not. The length and area of a building may be known, but not its

width. The temperature in °F might be known but not in °C. We may know some

positions of a batted ball, and want to know how high or how far or how long it traveled.

We may wish to know, under certain assumptions, when the world population will reach a

certain level. We may have several constraints on a situation, and wish to know whether

they can all be satisfied. These lead to the solving of equations, or of systems of

equations, or of inequalities. Today, paper-and-pencil techniques are used in schools to

solve these equations, but computer software and sophisticated calculators already exist

14
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that enable such equations to be solved automatically. We expect that by the end of the

century the price of such tools will be such that it will be economically feasible for all

students to have access to them in schools, and that the tools will be user-friendly enough

to make them attractive for purchase by virtually all students. But whether or not these

tools are universally available, the use of algebra to obtain new information from given data

is an exceedingly important and powerful reason for its study.

As soon as one has a formula relating two or more quantities, natural questions

occur. What will happen if one of the quantities is changed? For instance. if the area of a

planned building is to be a certain quantity, and we are wondering what its dimensions

should be, what happens as we consider larger and larger lengths? Or what happens to

the velocity of a batted ball over time? Or what happens to the real value of money put in

a savings association when there is a certain amount of interest paid but also there is

inflation? We often wish to know what happens if we change a variable just a little.

Algebra is naturally associated with the study of functions and other relations between

variables. It provides a language by which change and variation are easily described.

Historical:y, this connection is so powerful that though it took thousands of years from the

time that algebraic problems were first considered until the development of algebra like

that we use today, it took less than another hundred years, from the 1 590s until the

1680s, to go from algebra to the development of calculus simultaneously in two different

countries.

The development of spreadsheets and graphing technology has made it possible to

store and access numerical and geometric information in a way unheard of a half century

ago. In small and large businesses, people examine relationships between costs and

profits by storing the information in spreadsheets, by changing one variable and seeing

what happens to others. Population, or sports statistics, or results of polls can be graphed

and examined. We used to think of functions as abstract entities, and it was appropriate

that they be introduced in the later years of high school mathematics. But today it has

become possible to see them, and to manipulate them both numerically and graphically,

and as a result they are concretized and far more accessible to younger students. They are

so concrete that some believe that it is through functions that one should learn algebra.

Note that the use of such media, and the development of algebraic understandings

grounded in them, represent a two-way street: operating on spreadsheets or with graphing

15



programs can help students develop understandings of algebraic ideas, and understanding

the algebraic ideas provides a structure for understanding how to work with the media.

When one looks at these reasons, it is difficult to explain why any student should

not learn at least this much algebra.

We believe the above ideas should be mastered by all students by the end of tenth

grade. In order to do so, much of this algebra should be given concentrated attention

before the end of eighth grade. It is also the case that there are concepts (e.g., estimation

and optimization) and processes (such as modeling and cooperation) that need

concentrated attention. For this to take place, the algebra will have to be packaged

differently than it has before. It will have to be done over a longer period of time, and with

many more connections to other branches of mathematics. But there is other algebra to

which all students should be introduced before the end of tenth grade, and as many

students as possible should have opportunities to study in more depth.

Recommendation 3: All students should be introduced to operations and their properties in

the various number systems (such as whole numbers, integers, real numbers, and complex

numbers), and on objects other than numbers (such as sets, matrices, transformations, and

propositions).

The storing of data in arrays such as those found in spreadsheets is not new.

Newspapers have for a long time given weather, stock, and sports information in rows and

columns. These arrays, when viewed mathematically, are called matrices. The

mathematics of these arraysone aspect of linear algebrais surprisingly fruitful. It is

related to the solving of systems of equations and to the changes in size and shape of

geometric figures, with applications as diverse as to the efficiency of delivery systems in

business and weather forecasts. It is not by accident that virtually every business major in

college needs to take some linear algebra. Linear algebra begins with the arrangement of

information in rows and columns and the solution of systems of two linear equations in

two unknowns such as has been traditional in early algebra study. One can then progress

up a ladder of abstractions, to the point where substantial mathematical power is seen.

The groundwork for such mathematics, including matrix operations and transformations

they represent, should be established in the high school algebra curriculum.

It is critical also that students realize that algebra studies patterns among patterns,

and that its variables may stand for objects other than numbers or points. The study of
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commonalities in the structures of arithmetic can begin in the early elementary grades,

when a student realizes that addition and multiplication are commutative but subtraction

and division are not. It should continue through the grades, as ideas of inverse operations

and inverse functions, and identities are studied both in arithmetic and with

transformations in geometry. The union and intersection of sets in geometry, systems of

equations in algebra, and their relationships tc the logic of propositions provide still another

example of the many commonalities that exist among diverse mathematical objects. The

structures themselvesfields, groups, and so onwe believe to be most appropriately

studied at the college level, but the language of properties (such as the properties of whole

numbers, integers, real numbers, and complex numbersl and the emphasis of common

features of diverse mathematical systems is appropriately a school level experience.

Recommendation 4: The mastery of a smaller number of paper-and-pencil manipulative

skills should be expected of all students. Symbol manipulation software and calculators

should be used for other manipulative skills, perhaps including skills not now accessible or

easily accessible with paper-and-pencil techniques.

It should be noted that we are not calling for an "easier" or "watered down" algebra

experience for students; rather, we are calling for a more appropriate experience, which

may well mean dealing with more complex, but more meaningful, topics than are currently

taught. Currently, [here are topics taught even in early algebra that we feel are not

necessary for all students to know because. they do not fit any of the major reasons for

studying algebra. These include, for example, the paper-and-pencil long division of

polynomials, extensive operations with rational polynomial expressions, and manipulations

with nth roots beyond n = 2. Also, students should not be asked to spend extensive

amounts of time mastering paper-and pencil manipulations that can more easily be done by

computer or calculator.

Recommendation 5: Both short-term and long-term strategies are needed to ensure that all

students study a significant amount of algebra.

The recommendations made above require a careful, long-term plan for the

development of a revitalized and meaningful algebra program. Ultimately, we envision a

more intellectually coherent, more accessible, and more powerful algebra experience for all

students. However, the development of such a program will take timeand there are

students in the current program who cannot wait until the new program is fully in place.
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Those students need help now, on the basis of what we do know. Hence, we propose a

two-pronged strategy: (a) the development of a long-term approach for the restructuring of

K-12 mathematics, with a deeply embedded strand of algebraic ideas as discussed above;

and (b) the pursuit of short-term improvements in current courses called "algebra" for

those students who are currently in the pipeline. In the short run, current courses can be

made more meaningful, and the experience of some algebraic ideas can be embedded

substantively into the middle school curriculum.

Recommendation 6: A much expanded research base is required to make continued

progress on recommendations 1-5 above.

Much of the progress of the past decade has been undergirded by increased

understandings of the processes of thinking and learningunderstandings of the kinds of

active engagement required for mathematics learning, and of the inadequacy (for the vast

majority of students) of instruction in disembodied symbol manipulation. We have, for

example, made some progress on conceptualizing the kinds of connections students need

to make among various representations (verbal, tabular, graphical, symbolic) to be flexible

and competent users of algebra. We have an improved, although still sketchy,

understanding of the cognitive underpinnings of competence in algebra, and of the kinds of

instructional practices that support the development of such competence. Some progress

has been made on the uses of technology in algebra (though this is a moving target!).

However, we need to know much more about these issues; also about what constitutes

"symbol sense" and how it is developed; about the roles and balance of "rote skills" and

machine-performed computations; about the development of modeling skills and the

character of mathematical abstraction; about the successes and difficulties of various

approaches to teaching algebra (including attempts in other countries), and about the use

of mathematical and algebraic thinking, often unrecognized, in work settings. Likewise

(though we have dealt with this theme only implicitly, because it is the province of

Working Group 2), we need to know much more about the creation of effective

instructional environments, and the kinds of teacher understandings required to foster

algebraic thinking in such environments.
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Five Questions About Algebra Reform
(and a Thought Experiment)

Daniel Chazan
Michigan State University

1. Why Does High School Mathematics Fulfill a Gate Keeping Role in
Our Society? (assuming that mathematics fulfills such a role)

I find Philip Cusick's idea of the "egalitarian ideal" important in this contextthat

schools will provide each student with an opportunity for social, political, and economic

equality. Our society at least pays lip service to the desire to actualize the potential of a

wide range of our population, yet college is a limited resource and is not universally

accessible. Criteria for access to continued education can't be obviously unfair. There

needs to be some sort of seemingly objective measure. The valuation of mathematics has a

long history in western thought. It is seen as a difficult subject of study and one which is

some sort of index of intellectual capability.

As mathematics educators, it is important to acknowledge that we benefit from this

gate keeping role. This role makes mathematics important politically and helps justify much

of the funding that is now available to us. Art educators, for example, are finding the

current budgetary constraints much more problematic. At the same time, there are

unfortunate side effects of the identification of mathematics with gate keeping and access

to college. In particular, it makes it difficult to think about the mathematics education of

students who don't end up going to college. Serious attempts in such a direction are

hampered by concern that such a mathematics education will systematically exclude

identifiable groups (by race, class, gender, ethnicity) from a college education and thus

contravene the egalitarian ideal.

2. Why Has the Traditional Set of Algebra Courses Become So Central
in the High School Mathematics Curriculum?

I believe that the centrality of algebra is a result of its (hierarchical) connection with

calculus and our adherence to the egalitarian ideal. Arguably, calculus is seen as an

important part of the background of a literate graduate of U.S elite institutions of higher

19

I)



education. Colleges that don't insist on calculus for the most part seem to do so

apologetically with some sort of argument about the lack of preparation of incoming

students. Skill at algebraic manipulations is seen as a prerequisite for calculus. In many

institutions, students who are not ready for calculus must do prior coursework without

receiving credit.

Though I do not have any scholarly insight, it is interesting to speculate about how

calculus came to have this role in college education. Clearly, there are some fields for

which calculus is an important technique (faculty in these fields thus have concerns about

changes in algebra and calculus curricula). However, I think that the importance given to

calculus is an historical artifact of the felt achievement that calculus represented at the

time it was initially being developed and colleges were being created. These ideas were

thought to be the most powerful ideas created to that point. At the same time, people

were deciding what to include in a college education.

The combination of the importance of calculus at the college level and the

egalitarian ideal suggests that it is important, at least in theory, to provide a wide range of

students with access to mathematical preparation which would allow them to enter

calculus successfully (though much of the mathematics taught at colleges is remedial from

this point of view). Algebra is seen as the necessary preparation for calculus. Thus, high

school in particular should prepare as many students as possible for calculus by taking

algebra. There must be "good" reasons for putting students in mathematics classes which

do not include such preparation.

When thinking of algebra specifically, much of what is taught in traditional algebra I

and algebra II courses is a comfort with the manipulation of symbols. The main reason to

acquire this comfort is to enable the student to do further mathematics (mainly calculus).

These manipulations are taught by modeling and by rote, and the appropriateness of

particular manipulations for particular instructions (simplify, factor, solve) is accomplished

by pointing and repetition (ostention). The unfortunate effect of this situation is that as

mathematics teachers, we are always focusing on what mathematics comes next and not

how the mathematics we are teaching can be of value for people in their lives. Again,

students who do not go to college end up being poorly served.

One intriguing idea proposed by Jim Kaput at the conference is to change our model

of curriculum drastically from a layer cake approach to a strands approach. Thus, he
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proposes removing calculus as the capstone of high school mathematics by integrating

calculus into the K-10 mathematics curriculum as the study of the mathematics of change.

Study of change could then be used as a context for developing algebraic understandings.

Algebra would then be a part of all students' elementary and middle school experience.

3. What Might Be Important Criteria for Proposals for Changing the
Algebra Curriculum? (if there actually is such a possibility)

As someone who teaches an Algebra I class with students who in large percentages

will both go on to some postsecondary education and who will work upon graduation from

(or leaving) high school, I would like to be able to serve both types of students. I would

like to prepare students who might like to go to college in such a way tiiat they can go to

college. I would also like to teach students who are not headed to college in such a way

that they will feel that their interests, concerns, and life trajectory are being acknowledged

and planned for.

At the same time, I don't want to be making the decision for my students about

which category they fall into. I'd also not like to have school counselors making those

decisions. Finally, I am also concerned about having some of my students making those

decisions without adult guidance and without access to a broad range of information.

Interestingly, at our conference, university mathematicians also expressed a concern about

the preparation of students for linear and abstract algebra at the college level.

4. Is it Possible to Meet Students' Needs by Teaching a Single
Curriculum to a Heterogeneous Group of Students in a Single Class? If
So, What Might Be a Conceivable Basis for Such a Curriculum? (It's a
setup! I'm sure there must be other approaches as well.)

I'm not sure if it is possible to do so, but I think that the benefits of having such a

curriculum justify an exploration of any possibilities that people can suggest. Such a

curriculum would allow teachers to fulfill their responsibilities to the egalitarian ideal and

also teach meaningful mathematics to students who are not headed to college.

For the past 3 years, I have been teaching Algebra I as a course focused on learning

how to express and study mathematically, relationships between two varying quantities

an independent variable and a dependent one (similar in many respects to the kinds of

problems presented by Alba Thompson). We spend a lot of time iearning to read and write

tables, graphs, and expressions (symbols) which represem actual quantities in situations
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(ones that I design, one that students design, an ones which we find in exploring

mathematics in the world of work). We also study tables, graphs, and expressions in the

context of pure mathematics.

I see such an emphasis as valuable in helping students who are going on to calculus

develop intuitions and skills which will be useful as they continue to study functions. After

talking with Guershon Harel, I think developing an algebraic habit of mind (a phrase which

Al Cuoco kept raising) which insists on understanding what it is that the symbols are

standing for is a helpful prerequisite for other more advanced mathematics courses like

linear algebra and abstract algebra. I also think that such of course is of value to students

who do not go to college. Tables and graphs are cultural artifacts that are widely found in

our society (more widely than literal symbols, though literal symbols are becoming more

important in interactions with computers). These artifacts are not necessarily self-evident.

There is a lot to learn about reading these representations.

5. What are Some Obstacles to the Creation of Such a Curriculum? (I'm
assuming that there are many more than the one indicated below, for example, what are
the ramifications for college math curricula.)

The traditional Algebra I course focuses on developing skills at the manipulation of

symbols. Most of the manipulations are done in a "pure" math context, without reference

to situations. Students are rarely pressed co find contexts which would lead to strings of

algebraic symbols. Word problems, as the representative of situations in the traditional

course, are seen as a place to apply equation solving. Tabular or graphical solutions are not

developed or stressed.

As a teacher, I have found it challenging to take the agenda of quantities in

situations seriously. There is a huge intellectual challenge hereto construct an

understanding of how mathematics helps us appreciate aspects of the relationships

between quantities which otherwise are not accessible. I've been looking for where tables,

graphs, and symbols show up and how they help me understand calculations (algorithms)

which people compute repetitively and the relationships between quantities which such

algorithms signify.

To close this paper and give an example of the assertions in the previous paragraph,

I'd like to share attempts to think about the purposes and values for learning to simplify

linear expressions. I'm not sure whether the understandings expressed below suggest that
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learning about such simplifications is important for people not going further in mathematics

(maybe there are other more important things), but it is an attempt to provide such a

rationale. (Again, it's a set up. I've tried to choose the hardest thing i ould find.)

Forms of Linear Expressions

Linear functions of one variable are functions for which there is a constant rate of

change, in other words, there is a constant change in the value of the dependent variable

for equal sized increments in the independent variable. Traditionally, a series of

"properties" are valued in describing such functions and differentiating them one from

another: whether the function is decreasing or increasing; the rate of change, or slope; the

value which corresponds to 0, or the y intercept; and the value of the independent variable

which results in an output of 0, or the x intercept. All of these properties can be read off

suitably prepared graphs, tables, or expressions. I'll focus below on the relationships

between forms of linear expressions and these four properties.

Linear functions come in many shapes and sizes, for example:

-3504 3) + 700;

3x 27; 3 Ix 91)

4-(3-12-11 +x))); and

3x +447x +3x +2

Traditionally, one form is considered to be the privileged, simplified form. This form mx+ b,

sometimes called the slope intercept form, cannot be made simpler. The knowledgeable

reader of expressions can, without substituting values, read off the values of the slope and

the y intercept of an expression in this form. For the purpose of simplifications, particularly

of rational expressions, students are also asked to factor expressions in the mx +b form

and put them in what is commonly known as the factored form m(x-r).

I will not attempt an exhaustive analysis of all possible forms, or investigate how

different forms arise in a variety of practices. Rather I will concentrate on three particular

forms, all of which can be considered simple in that they cannot be simplified further

without the use of the distributive rule, that is there are no like terms which can be

combined. In the chart that follows, these forms are named to highlight the information

each presents to the knowledgeable reader.
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mx + b
slope/y intercept

m(x-r)
slope/x intercept

m(x-x1)+y,
point/slope

increasing/
decreasing

can be read off can be read off can be read off

slope can be read off can be read off can be read off

y intercept can be read off must be computed must be computed

x intercept must be computed can be read off must be computed

In some ways, the point/slope form can be considered the most general one, where the

other two are specific cases. The point slope presents information about some point (x

y,) whereas the other two forms present information about "special" points. Thus, these

three forms differ in the particular points which they identify most easily for the

knowledgeable reader.

To me, this difference becomes interesting when working on word problems or in

understanding how algebraic expressions represent a situation. The alternative forms can

be considered as different mathematical descriptions of the situation. For example:

You take out a car loan (at 0 percent financing) and then repay it by paying

the same amount each month. Here are three mathematical descriptions of

the balance that you owe and how it changes over time.

Balance of account (time) = 21 5t -4300

Balance of account (time) = 215(t 10) -2150

Balance of account (time) = 21 5(t - 20)

In particular, in cases like this one, where time is the independent variable, the descriptions

can be thought of as descriptions from a privileged moment in tame, written with the

information available at that moment. Thus, 215t -4300 indicates the balance at the start

of the loan; 215(t 10) -2150 indicates that $2150 are owed at the 10-month mark; and

215(t - 20) indicates that the loan was repaid after 20 months.

Symbol Manipulation

The traditional algebra curriculum has been roundly criticized for an emphasis on

"meaningless" symhol manipulation where students have no idea why they are rewriting

expressions or how to judge when their answers are valid. As a result, current reform

efforts (e.g., UCSMP) have tried to minimize or remove symbolic manipulation wherever
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possible. The UCSMP Algebra I text de-emphasizes factoring. The Algebra II text limits the

amount of attention to rational expressions.

Appreciating that different symbolic forms provide different perspectives on the

same function, symbolic manipulation takes on a different perspective. These

manipulations (in the case of linear functions, the distributive rule) can help us demonstrate

to ourselves that two different expressions are indeed the same (in the sense of producing

the same output for the same input). In addition, and perhaps most importantly,

manipulation of symbols can sometimes lead to expressions that provide new insight into

the situation which they describe. Switching the form of the expression may highlight

information about a different point on the graph, a different aspect of the situation.

Notice, however, that symbol manipulation can be avoided. Knowledgeable readers

of the three forms described above might not need to use the distributive rule to carry out

a manipulation. They might be able to create alternative expressions for the same function

simply from information provided in a table of values. Thus, if the goal is to switch from

one known form to another, traditional symbol manipulationusing the distributive lawis

not necessary, though the law justifies why such a manipulation works.

Conclusion

At the conference, Bob Moses made a series of powerful statements about

students' need to learn whatever symbol sense is necessary to assure themselves

economic access (a moving target). As others (like Rogers Hall, Jim Greeno, and Alan

Schoenfeld) argued, at the present time, we do not know much about the facility with

algebraic representations that current jobs/professions require (let alone future ones). There

is also much that we do not know about helping students become fluent with these

representations (literal symbols, tables, and graphs). All of which suggests that we have a

large agenda on which to work.
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Algebra and the Democratic Imperative

Robert B. Davis
Rutgers University

The evidence is unmistakable: in the past dozen years or so, the United States has

become more of a bimodal society in terms of family income levels, and all the life

opportunities and constraints that that implies. We are becoming a two-caste society.

(See, for example, Danziger & Gottschalk 1993; Hacker 1992; Phillips 1990; Wilson 1987.

For other dimensions of the problem, see also Lemann 1991.) Clearly, this is not solely

attributable to education, but it is equally clear that education does play an important role

in this result. And, within education, the subject that is sometimes called ninth-grade

algebra plays a particularly decisive part. Acquire a mastery of ninth-grade algebra and

many possibilities open up to you, but they will be unavailable if you do not learn ninth-

grade algebra. This creates one more aspect of a caste system: those who know algebra

versus those who do not. We will pay a formidable price if we ignore this situation (see,

for example, Moses, in press).

It is not equally clear how to address the problem. There are constraints on all

sides, limiting possible strategies for creating solutions. For some careers, a certain level

of proficiency in algebra is a true necessity, but what this level actually is is in doubt, and

many stated requirements probably go beyond anything that is actually needed (see, for

example, Noddings, in press). Existing instruction in algebra is often remarkably

ineffective, not merely as mathematics education but as education itself (see Davis, in

press). Better routes toward the learning of algebra need to be created, but even here

there is not complete agreement on desirable directions for improvement, and there is an

inadequate research base for deciding, especially if one aims for the relatively new goal of

student understanding.

Perhaps above all, there is the structural peculiarity of U.S. curricula, virtually

unique in the entire world, of employing the so-called layer-cake approach: algebra in

grade nine (or perhaps in grade eight), followed by a year of Euclidean synthetic geometry,

which is then followed by an additional year of intermediate algebra, and so on. Most

other nations arrange for students to study algebra beginning in, perhaps, grade two, and

27



,

continuing on through grade 12. Clearly, a layer-cake approach, by making algebra an

event that occurs at a definite, pre-specified time, maximizes the risk that any particular

student may fail in this event; the risk would be far less if "learning algebra" were an on-

going activity spread over many years, as the learning of language inevitably is. (Indeed,

as Rogers Hall has pointed out, when one looks carefully at the expressive power of

algebraic symbolism, the similarity to natural language linguistics is quite striking, and

comparisons with language learning may not be unreasonable. The meanings are complex

and subtle, even if the notations themselves are limited and orderly. Perhaps learning

algebra ought to take a considerable number of years.)

It is hard to escape the conclusions that U.S. curricula would avoid the "ninth-grade

algebra" problemthe fact that this specific school subject denies many students the

opportunity to continue further in mathematicsif the study of algebra began in, say,

grade two, and continued throughout the remaining years of education, as it does in most

nations today (this is sometimes called the strands approachdifferent strands, such as

algebra, geometry, and measurement, extend over the years of schooling; there is no

question of which comes first or which comes second, etc.). Such a change may be hard

to bring about, which suggests a two-pronged approach: make whatever improvements

can be made, for a short-term remedy, but realize from the outset that more fundamental

change is really needed, and begin immediately to build toward this deeper change.

There is some foundation to build on, but more is needed. For what we do know,

consider the evidence acquired in other countries and, since at least the 1950s, also in

some schools in the United States (see, for example, Davis 1985). But if we intend to

continue our modern emphasis on meanings and understanding, we need to build a much

broader research base. Younger children can think profitably, even creatively, about

algebraic ideas, but their understandings must be developed carefully and gradually. (As

two examples, from among a great many, consider the case of a class of fifth-graders who

were unwilling to accept the statement

1 1 = 1
2 3 6
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as a true statement because, they argued, "for subtraction you have to have a common

denominator"thereby confusing, as children often do, the truth value of a statement with

the use of some specific algorithm. Mathematics, for them, means "doing what you are

told, and doing it the way you were told to do it"for them it does not dealas it does for

mathematicianswith truth, falsity, and implication. This can be a very important

difference. (See, for example, Davis 1988) As a second example, many researchers

report, independently, that fifth-grade students who are able to speak about specific

situations in almost-algebraic languagefor example, "If the numerator is 1, you just

multiply the denominator by 24"often experience great difficulty when they try to write

this in something closer to algebraic notation (see also English, in press).

But perhaps this analysis provides grounds for optimism: there may be a sensible

direction for remedying the situation in a basic way, if we have the will to make a

commitment to doing soand if we do what is needed in the areas of research and teacher

education, and in the area of creating appropriate curricula.
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Realism(s) for Learning Algebra

Rogers Hall
University of California at Berkeley

By setting out to redefine the role of algebra across the mathematics curriculum, the

Algebra Initiative has a huge agenda, and a great deal might ride on the kinds of consensus

that emerge from this group. In writing about an "appropriate algebra experience" across

the K-12 curriculum, I want to ft-sus on the role that realism can or should play in learning

algebra. But first I should describe the position from which I approach this question.

I teach graduate courses at the intersection of cognitive science and mathematics

education that are part of an interdisciplinary program in a school of education. My own

training is in computer science and psychology, where I have studied (al how (or whether)

we can make sensible computational models of human reasoning and learning and (b) what

are good representational media for learning and doing mathematics. I have ended up

looking very closely at what peoplesome good and some less good at solving algebra

problemsdo when they use representations to coordinate understanding and

computation. It turns out that people's representational practices in mathematics are much

more complicated than I had imagined when I started trying to write computer programs to

model their activity. That's good for pushing along iesearch on cognition, and my own

view is that developing and testing curriculum materials provides a way to study

representational practices in places that can make a difference.

Two things, then, about how I approach this agenda. First, my background qualifies

me to drone on about the mathematical properties of programming languages or processes

constructed out of these languages, but my comments should not be read as coming from

a mathematician or a teacher or mathematics. Second, I want to position my work pretty

clearly within the political and technical agendas that Kaput and Lacampagne have

sketched for the working groups. From my perspective, teaching in a school of education

and doing research on representational practices in mathematics, the need for more and

better education in algebra or new forms of computing technology might seem like an

unalloyed good thing. I don't think this is necessarily true, however, and want to use this
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paper to think about where to push forward in either area. In particular, I will argue that

how we treat pedagogical realism has a lot to do with what we think mathematics is, why

algebra is important within mathematics, and how we should invest resources in changing

mathematics education.

What is a Mathematical Application?

As with Elizabeth Phillips' list of definitions for algebra, I've heard lots of variations

on what applied math problems are about:

Oh, those problems (school alumni);

Problems we never do at the end of the chapter (algebra students);

Word or story problems (psychologists);

Math problems with colorful pictures (a particularly caustic graduate

student); and

Where you don't learn about using mathematics, that comes later (alumni).

Before pulling apart historical views of particular kinds of applied mathematics

problems, 1 want to focus on a prior question: What kind of realism do we value in

teaching people about mathematics, and in particular about ideas that are central to

algebra? Since part of my life over the past 2 years has been caught up in an NSF-

sponsored Mizid le School Mathematics Through Applications Project (MMAP 1992) at

Stanford University and the Institute for Research on Learning, I will draw examples from

my own research and from the ongoing experience of developing particular kinds of

applications, working with teachers to implement these units in diverse classrooms, and

trying to determine how things are going.

Reasons for Realism

I won't worry much here about arguing for realism in teaching mathematics,

particularly since I think we should treat what "real" means as a serious design problem. It

should suffice to point out that most versions of individual or social constructivism (Cobb

et al. 1992; Walkerdine 1988; von Glasersfe'd, Suchtung 1992), psychological or

sociological accounts of mathematical knowledge and learning (Bloor 1976/1991; Kitcher

1984), and reformist writing about the mathematics curriculum call for students to

encounter mathematical ideas in realistic situations. There are many, not entirely

compatible reasons for wanting realism: familiar constraints in the domain of application,
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the requirement that one find and structure an open-ended problem for solution, or

engaging student interest. Any of these could be important in working to overcome the bad

news about algebra that Kaput's position paper outlines.

Realism as a Comparison

For discussion purposes, I'll suggest a general frame for unpacking what we could

mean by realism by transforming adjectives like "authentic," "applied," or "realistic" into a

more explicit statement like "activity X in school is like activity Y in Z, in the following

ways...". This is a familiar proportional analogy,

X : school :: Y Z

By thinking about realism as a comparison that places components from a source domain

(activity Y 'n setting Z) in correspondence with a target domain (activity X in a school

setting), we can bring into relief the importance of relations between mathematical

activities and the settings in which they are pursued. Kaput (opening talk) emphasizes this

clearly by showing cognitive scientists and educators working to convert images of

mathematical work outside school (complex problems, tools, skill, and communication

between people) into images of mathematical activity in school. By asking us to be explicit

about what parts of these images are being placed in correspondence, the analogy may

help us see what's at stake in claims about realism for the algebra curricula, at least from

the perspective of people who design and evaluate these materials.

Treating realism as an analogical comparison, several issues immediately pop to the

foreground.

1. Applications are not just tasks (X's or `Cs) but are activities that can have

complex relations to the settings in which people pursue them. This

assumes, of course, that we see an application as more than a pedagogical

vehicle for delivering a mathematical problem (discussed below).

2. It is not just that activity X is like activity Y, although this may be hugely

important. Instead, we also need to worry about whether the relation(s)

between X and school are like the relation(s) between Y and Z. These could

include relations of accountability, ways of talking and writing about

mathematics, conventions for being right, done.

3. There are many activities in situ (VIZ pairs), that could provide areas of

applications, and choosing among them requires deciding (a) what kind of
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mathematics we value and (b) what resources we are willing to deploy in

schools.

4. The mathematical structures that apparently underlie activity in situ can

appear similar for us, as designers, across school and application setting. But

why should we assume these structures will be similar for students and

practitioners in the area of application, a critical element in ideas about

transfer of training (Sing ley and Anderson 1989; Greeno, Smith, and Moore

19931?

5. What are we saying about mathematics, its uses, and students' access to

different forms of after school life when we carry one of these proportional

analogies into instruction?

These questions go beyond the scope of a short conference paper. In my view,

answering them in ways that are productive for the learning and teaching of algebra will

require research that examines possible relations between math in school and at work as

an empirical problem. To make the issues more concrete, however, I will consider two

instances of "mathematical applications" that may help to exercise the framework.

Story Problems as Vehicles for Mathematical Structure

Mathematical "applications," as they typically appear in algebra textbooks over the

past two decades (e.g., Mayer 1981), have had an almost universally recognizable form:

(CLOSURE)

Tom can drive to Bill's house in 4 hours and Bill can drive to Tom's house in

3 hours. How long will it take them to meet if they both leave their houses

at the same time and drive toward each other?

This is a story or word problem typical of many algebra textbooks, and one that many

people find very difficult to solve, since rates are presented as hypothetical events (i.e.,

can drive to Bill's house in 4 hours) rather than constant values, and the distance between

Tom and Bill's house is not given. Now, this kind of problem produces very "real"

difficulties for algebra students and their teachers, as evident in the following transcript

excerpts from research that contrasts how people with different levels of achieved

mathematical competence (i.e., levels of schooling) use different forms of representation to

solve these problems (Hall et al 1989; Hall 1990). K is an algebra student, taking courses
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in a community college in the hopes of matriculating into the University of California

system. R teaches algebra in a community college, though K is not one of his students.

K starts work on the problem with a drawing that weakly organizes given quantities.

After constructing "my little dirt table," her voice becomes progressively more tentative,

the pauses between her utterances elongate, and she wonders whether she is missing

something to "plug into that... table."

K: Tom can drive to Bill's house in 4 hoOrs, and Bill can drive to Tom's house in 3

hours. How long will it ake them to meet if they both leave their houses at the

same time and drive toward each other? So we've got...Tom driving... Let's put

Bill's house here (draws box at left), and Tom's house here (box to right). And...

Ok, so Tom's gonna drive to Bill's house... in 4 hours (draws a left directed

segment labeled 4 hrs)... it takes him 4 hrs to drive there. Bill can drive to Tom's

house in... 3 hrs (draws right directed segment labeled 3 hrs)... He's got a better

car (both laugh). How long will it take them to meet if they leave their houses at

the same time and drive toward each other? Alright... my little dirt table here

(draws a 2 X 3 table, labels columns d, r, t)... Alright so we've got... Bill driving...

is that him going to his house? ... That's 3 hrs. Wait, let's rae, wait, that's

Tim's house (laughs) but Bill's driving there? Oh well, doesn't matter, Tim is

driving... Let's see now, I'm confused (mumbles while reading text). In any case

they're driving toward each other, it doesn't matter where they're starting from

actually.

Rogers: Um hmm.

K: Ok... umm... So Tim can drive in 4 hrs. Here's Tim (writes T as row label)... and

Bill (writes other label)... So Tim... 4 hrs (writes 4 in Tim's rate cell)... We don't

know the distance. Bummer! (laughs) Ok, he drives in 3 hrs (writes 3 in Bill's rate

cell)... (long pause) How long will it take.., for them to meet... if they leave at the

same time and drive toward each other? (long pause)

Rogers: What you thinkin'?

K: I'm v lndering if this is the right table, if its a distance table, because I don't have

all the information... that you would normally plug into that... table. I'm trying to

think if there's another... um... no TRW form doesn't work. That's the... the work...
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Now for R, who regularly teaches algebra and has a widely reported reputation for

making algebraic concepts accessible to students. He also starts with a drawing, but

distinguishes clearly between rates as hypothetical events (e.g., a trip in 4 hours) and the

circumstances of collision that the problem asks about.

R: Tom can drive to Bill's house in 4 hours, and Bill can drive to Tom's house in 3

hours. How long will it take them to MEET if they BOTH leave their houses at the

same time and drive toward each other? Oh, I like that, that's a neat problem! And

I don't at the moment have any idea how to solve it.

Rogers: OK.

R: So I'm just gonna draw a picture. This is Tom's house and this is Bill's house, and

Tom drives to Bill's house in 4 hours, so if he were going this way, it would take 4

hours to complete the trip (draws and labels directed segment). If Bill, on the other

hand, is going toward Tom, it takes him... 3 hours for the trip (draws opposite

directed segment and labels it). Now the DISTANCE is fixed. I'll write myself a

note, distance is fixed (writes "d = fixed").

R: (reading) How long will it take them to meet if they both leave their houses at the

same time and drive toward each other? So we've got a situation in which one guy

is going this way and another guy is going this way (draws a second diagram,

below first, segments don't close) and they meet somewhere. It won't be in the

MIDDLE, because this guy takes longer to travel the same distance, so he will not

have... again, the amount of time they travel is the same, if they both leave and

then they meet, there's a good joke that goes along with that.

These reactions are typical of what I call a gap between certainty and precision:

both K (student) and R (teacher) understand the situation presented by the problem

perfectly well, but they are momentarily (sometimes, much longer) at a loss for a way to

go about finding a precise value for the length of time it will take the drivers to collide.

The flurry of overlapping representational forms (talk, bodily activity, and writing or

drawing) that ensue make for a fascinating exploration of how various material and social

resources can structure mathematical cognition (Hall 1993), but I want instead to focus

here on how these problems present a particular form of pedagogic& realism.

Gaps between certainty and precision are a hallmark of applied problems in

conventional mathematics texts, where assumed familiarity with the problem situation (i.e.,
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relatively well-developed common-sense reasoning) is thought to anchor and guide

students' developing understanding of mathematical notations and operations. Drawing this

problem across the frame of our proportional analogy (X : school :: Y : X), however, we

find an activity (two travelers instantaneously reaching uniform speeds) in a physical

setting (a road laid out in a straight line between two private residences) that could not

literally be familiar to anyone.

The problem is familiar to both K and R, but it is familiar as a school problem

i.e., within our proportional analogy, this kind of realism maps the school domain back onto

itself (Greeno 1989). To their credit as adaptive participants in school math, people learn to

deal with these kinds of problems in classroom and testing situations. However, once at

work trying to solve such problems, they find it difficult to squeeze any meaningful

constraints out of the situation that will help them organize mathematical inference or

calculation. Rather than providing a "realistic" context for traveling in vehicles, this story

problem and others like it simply provide a vehicle for delivering a mathematical structure.

As was pointed out in the keynote address to initiative working groups, it is

important to realize that mathematical forms have a history, and I will argue that the

CLOSURE problem is just such a form. I would add that, once these forms are inserted into

the capital intensive process of producing textbooks and assessments, they have an

historical momentum that is difficult to elude, whatever our beliefs about "authentic"

mathematics. In the case of algebra story problems, their history goes back (at least) to the

earliest known printed mathematics textbook in the West, the Treviso Arithmetic (Swetz

1987), used to train young men (and only men, apparently) seeking careers as

"computers" in the expanding mercantile economies of Europe. Within the Treviso we find

a couple of couriers who appear to be the ancestors of Tom and Bill:

The Holy Father sent a courier from Rome to Venice, commanding him that

he should reach Venice in 7 days. And the most illustrious Signoria of

Venice also sent another courier to Rome, who should reach Rome in 9 days.

And from Rome to Venice is 250 miles. It happened that by order cf these

lords the couriers started their journeys at the same time. It is required to

find in how many days they will meet, and how many miles each will have

traveled. (Treviso Arithmetic, in Swetz 1987, p. 158)
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Machiavelli, at the tender age of nine, had yet to enter government service, and

contemporaries only slightly older (aged 12 to 16) were facing story problems very similar

to those found in algebra texts we use today. According to Swetz, even these problems

had little to do with actual mercantile practices in the late 1500s, but readers of the

Treviso were encouraged to study these problems and associated calculation schemes

(e.g., the "rule of three things") to acquire essential skills,

As a carpenter (wishing to do well in his profession) needs to have his tools

very sharp, and to know what tools to use first, and what next to use, etc.,

to the end that he may have honor from his work, so it is in the work of the

Practica. (Treviso Arithmetic, in Swetz 1987, p. 101)

The role these kinds of problems might play in exercising generalizable algebraic skills has

not escaped psychologists, who have taken up story or word problems as malleable

experimental materials for investigating transfer and analogical inference (Anderson and

Sing ley 1989; Dellarosa-Cummins et al. 1988; Hall et al. 1989; Reed et al. 1985). There is

also a line of work that takes the underlying structure of word problems as a basic

conceptual domain for understanding quantitative relations (Carpenter et al. 1984; Kintsch

and Greeno 1985; Vergnaud 1982, 1983), and these structures have been shown to be

learnable when made explicit to teachers and students (Carpenter et al. 1989).

While these studies bring cognitive science and educational practice together in

interesting ways, they generally take realism to be an unanalyzed property of good

experimental or instructional materials. However, stretching story problems over a

proportional analogy that questions realism as a relation between school and some other

place, can we find any image of authentic mathematical activity that these forms bring into

mathematics classrooms or testing situations? Rather than accepting the historical

momentum of these problems as curricular forms, we might ask what other forms of

realism could be productive in school mathematics?

Design Projects as Settings for Mathematical Work

As an alternative approach, I want (a) to sketch a different kind of mathematical

application, (b) to analyze briefly the kind of realism that it is designed to provide for

learners, and (c) to consider how this relates to "big ideas" in algebra that might take root

in elementary and middle school mathematics.
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This example is taken from field trials in an NSF-sponsored curriculum development

project for middle school mathematics (MMAP 1992), where an explicit aim is to create

mathematical activities in classrooms that have specific relations to the mathematical

activities of professionals in design-oriented work (e.g., architectural design). Curriculum

units are developed with teachers, who spend time with math practitioners in field sites

during a summer practicum, help to write curriculum activities and design software with

our project staff, and then work with us to implement these units during the following

school year. All these applications units involve design activities in areas like living/working

space, ecological models of interacting species, or secure encoding schemes. In the

example that follows, I focus on early field data from one of these units, called the

Antarctica Project.

In MMAP classrooms using the Antarctica Project, students work in groups on an

extended project (4 to 10 weeks) where they design models of living/working space using

computer based design tools (the ArchiTech environment) within a repeated cycle of

activities. During each cycle, students analyze a design problem (e.g., the needs of an

NSF-sponsored biological research team wintering over in Antarctica), they construct a

model that provides a partial solution to their analysis of the problem (e.g., a structure with

sufficient lab space and adequate heating for an Antarctic winter), they evaluate this model

in light of new or elaborated constraints (e.g., providing storage space for redundant

supplies and equipment), and then they repeat the cycle with an updated model and design

problem. The interface of a computer-based simulation environment (ArchiTech) provides

students with specific representational systems (e.g., two-dimensional scale models and a

rudimentary database of basic quantities that can be used to describe these models) and a

set of tools for changing, recording, or analyzing the quantitative behavior of the models

they construct. By porting data from the design tool into a simplified spreadsheet

environment, related values generated during analysis or evaluation of a model can be

organized in tabular or graphical form, for presentation or comparison with alternative

models from other student groups.

The following memo is a Request for Proposals handed to students at the outset of

their design project:
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FROZEN SCIENTIFIC GROUP MEMO 1

TO: Expedition Design, Inc.

FROM: Frozen Scientific Group
2550 Hanover Street
Palo Alto, CA 94304

RE: Request for Design Proposal

This memo is a request fora design proposal. We are asking for proposals from
several companies, and will accept the proposal that best meets our needs at the
most reasonable cost.

We need a design for a scientific research station on the Antarctic coast.
The site for the station is a small flat field of dry rock 17 meters wide and 30
meters long. The station should provide lab space, housing, and recreational
facilities for four scientists, who will be studying phytoplankton. Our project
will use the station for two years. Our funders are particularly concerned
that the design we accept is energy-efficient. Your proposal should reflect
that concern, while still maintaining overall reasonable costs. Attached you'll
find a short description of life in Antarctica, which should give you a better
idea of our requirements.

Your design proposal report should include a floor plan of the design, along with a
proposed budget for building and heating costs over the two years. Of course, you.
will want to include materials that explain why your design best meets our needs.

We look forward to receiving your proposal.

Students are provided with documentary sources about the continent of Antarctica,

the sometimes magic history of its exploration, the rigors involved in wintering over at

coastal and central research stations, and why these settings provide such an attractive

site for biological and atmospheric research activities. Students are also encouraged to

expand their research and analysis activities using additional resources provided by their

teachers, school or community libraries, or parents (e.g., in some field trial sites, adults

who work in architectural design visit the classroom and discuss the work they do).

Students spend several weeks iterating through cycles of analysis, design, and

evaluation, using the ArchiTech environment shown below and a simplified version of a

commercial spreadsheet package.
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This screen shot shows a floorplan-in-progress from a group of four seventh-grade

students, just starting to use the environment. This software is intended to resemble

computer aided design (CAD) tools used by architectural engineers and has been developed

to support units like the Antarctica Project by a MMAP team of teachers, educational

researchers, and technologists.

Three modes of activity are supported in this interface: (a) design tools (not shown

in the screen shot) allow students to construct a scalable, multistory floorplan model out of
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local materials like walls, windows, doors, and different types of furniture; (b) analysis

tools (sliders to the left of the floorplan in the screen shot) allow students to vary a

collection of quantitative parameters that determine global properties of the model such as

inside or outside temperatures and the insulation rating of various surfaces; and (c) a

display window (floating window at the bottom of the screen shot) allows students to

selectively examine the value of named quantities for temperature, spatial features of the

design, the cost of materials, and heating cost. Values displayed for a particular,

parameterized version of a student model can be saved in a tabular display and, along with

names for quantities, these can be copied into a spreadsheet environment for constructing

and examining more complex quantities (e.g., total cost to build and heat per unit of floor

area).

We have found that middle school students energetically engage in the process of

constructing models of living space (in the Antarctica unit and other design problems) and,

with guidance provided by teachers and supporting curriculum materials, their design

activity can be used to draw out relevant mathematical questions (e.g., exploring relations

between the perimeter and area of a closed figure) that students can then investigate using

these same design and spreadsheet tools.

The following transcript illustrates the character of group work in this environment,

drawn from the same group of seventh graders asked to work on a different design

problem, which we piloted as a performance-based assessment at the end of the

Antarctica Project. They were given an existing design for a dormitory in Seattle,

Washington and asked to redesign the facility under overall cost constraints for the much

colder climate of Duluth, Minnesota. G and Z are boys who in this excerpt take

responsibility for using the mouse (the primary input device for ArchiTech) and a hand-held

calculator (although given the option, no group of students used a spreadsheet available as

a background process during this task). T and S are girls, and while not at the controls of

either device (ArchiTech or the calculator), they have argued for reducing building costs

since this working session began.

G: Is this (heating cost) 42?

T: No, (points at display window) you do 38 times...

G: Twelve.

Z: Times... Oh, no, no, no. Its, = urn... 12 times 25 right? I think its 300. Yeh,
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that's right. Times 38.

??: That's PER MONTH!

G: If its $42 dollars it'd be 12 ... (looks down at design brief)

Z: (sharp intake of breath) Its WAY more. These cheapskates! We're gonna have to

make the (points to design cost in AW) design costs less.

T: I know. How about, this is a cheap college!

??: Its $14 over.

S: (looks from calculator to screen) Maybe (littler windows).

Z: How about we make, delete THAT door (pointing). We don't need two windows, I

mean two doors.

S: (leaning in) We don't (inaudible).

T: We don't need that many windows either!

Z: Yeh, all right (points at floorplan). Delete a door.

Without unpacking more complex analyses of these students' modeling activity in relation

to task structure and representational media available in different design environments

(Berg, Chiu, and Hall, to appear), I want to draw attention to several preliminary findings

about this kind of interactive work.

Cycles of activity in design work (i.e., considering alternatives, making a

change to the structure, and evaluating its consequences) appear to be

organized, repeating at a surprising (for us, at least) rate of every 30 seconds

or so in the groups we have been studying. We take this as evidence of high

levels of engagement on the part of some students.

Activity at the interface (pointing, running the mouse) are important in group

work but do not determine what happens in the final group solution, since

students who appear to be at the periphery of the action can play a

determining role in proposing or evaluating changes to a final design.

Talk and inference about quantities and their relations are strongly dominated

by the interface features available to students (e.g., selecting named

quantities, setting their values, and reading off outcomes from the display

window).

More systematic investigation of relations between quantities (e.g., outside

wall/roof insulation and the long run cost to build and heat a structure over
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time) sometimes occur during the course of design activity. However, these

spontaneous mathematical investigations are rare, so our curriculum needs to

deliberately propose activity structures that call for them.

Returning to the proportional analogy used to think about the realism of algebra

story problems in the preceding section, my analysis of an "application" like the Antarctica

Project is that we are able to bring a complex image of the relation between mathematical

activity and design work outside of school (Cuff 1991; Gantt and Nardi 1992; Henderson

1991; Nardi and Miller 1990, 1991; Suchman and Trigg 1993) into a middle school

classroom in a way that preserves aspects of the workplace that we think are likely to be

important in /earning about mathematical problem solving. At present, these aspects

include:

Mathematical problems emerge in functional contexts (i.e., mathematics is

for something that students are otherwise working on).

Social relations of accountability are built into the activity, in this case a

competitive bid structure across student teams and natural divisions of labor

within groups according to student interests and skills.

Traditional symbolic notations for managing quantitative relations are mixed

with a heterogeneous collection of tools (e.g., CAD and spreadsheet

software) that present a variety of representational systems (e.g., linked

scale models, a rudimentary database of named quantities, tabular arrays,

and linked graphical displays).

The extended scope of these design projects, by comparison with traditional

mathematical applications, provides for sustained work on problems that

have more than one solution and encourages students to treat their thinking

as a valuable historical product.

These are complicated claims, and we have quite a ways to go before presenting a

rigorous empirical evaluation of their validity. However, we feel this approach is certainly

richer in possibilities for realism than disembodied travel on imaginary roads in the service

of delivering a single mathematical structure (e.g., the CLOSURE problem). As we learn

more about mathematical activity in actual work settings, another line of research that

moves beyond the scope of this paper (Hall and Stevens, to appear), the aspects of

"realistic" mathematical activity we try to reconstruct inside classrooms will no doubt
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change our view of what the curriculum should contain and how we should evaluate our

students' learning.

Mathematics Incarnate

I want to and this short paper on realism with another analogy. Consider for a

moment all the mathematical activity that goes on across this planet on some particular

day, say a typical weekday but not over the holiday season. Let's say this corpus is made

up of lots of little parts, problems solved here, arguments made there, demonstrations

upheld or overturned in various places where people find the need to argue from necessity

about this quantity or that relation. If we think about this corpus as an organism for a

moment, the active body of mathematics incarnate, what parts of it do we really

understand? At an assembly like this Algebra Initiative, or in the research and teaching that

many of us do, which parts of the organism are we talking about, how broad is the scope

of our analysis, and how much do we understand about how to reproduce this organism?

When I think about this honestly, I have to believe that we are really only scratching

at the surface of the organism, maybe at the toenails of the body of mathematics, as it

actually unfolded on our typical weekday. Some would prefer to think that we are working

closer to the head of the organism, maybe studying how higher cerebral functions play out.

But in any case, our view of what mathematics is, how it works, and how it changes is

necessarily partial, usually static, probably self-interested, and even sometimes nostalgic.

If there is a body of mathematics in daily activity, it keeps moving, it is shaped by what

people actually do, and the ways in which they are able to share their work. My hope is

that we will get better at finding and using images of real mathematical activity when

teaching our children what this body is about and how it is changing.

47

4



References

Berg, R., Chiu, M. and Hall, R. (to appear). Interactive construction of familiar, fantastic,
and formal models in middle school mathematics. Interactive session accepted for 1994
AERA meetings.

Bloor, D. (1976, 1991). Knowledge and social imagery. Second Edition. Chicago: The
University of Chicago Press.

Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C. and Loef, M. (1989). Using
knowledge of children's mathematics thinking in classroom teaching: an experimental
study. American Educational Research Journal 26(4), 499-531.

Carpenter, T.P. and Moser, J.M. (1984). The acquisition, of addition and subtraction
concepts in grades one through three. Journal for Research in Mathematics Education 15,
179-202.

Collins, A., Brown, J.S., and Newman, S.E. (1989). Cognitive apprenticeship: teaching the
craft of reading, writing, and mathematics. In L.B. Resnick (ed.), Knowing, learning, and
instruction: Essays in honor of Robert Glaser. Hillsdale, NJ: Lawrence Erlbaum Associates.

Cuff, D. (1991). Architecture: The story of practice. Cambridge,. MA: The MIT Press.

de la Rocha, 0. L. (1986). Problems of sense and problems of scale: An ethnographic
study of arithmetic in everyday life. Doctoral dissertation, University of California, Irvine.
Dissertation Abstracts International, 47, 4198A.

Dellarosa Cummins, D., Kintsch, W., Reusser, K. and Weimer, R. (1988). The role of
understanding in solving word problems. Cognitive Psychology 20, 405-438.

Gantt, M., Nardi, B. (1992). Gardeners and gurus: Patterns of cooperation among CAD
users. Proceedings CHI '92, 3-7 May. Monterey, CA, 107-118.

Greeno, J. G. (1989). Situations, mental models, and generative knowledge. In D. Klahr
and K. Kotovsky (eds.). Complex information processing: The impact of Herbert A. Simon.
Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers, 285-318.

Greeno, J. G., Smith, D. R. and Moore, U. L. (1993). Transfer of situated learning. In D.
K. Detterman and R. J. Sternberg (eds.). Transfer on trial: Intelligence, cognition, and
instruction. Norwood, NJ: Ablex Pub. Corp.

Hall R. P. (1990). Making mathematics on paper: Constructing representations of stories
about related linear functions. Doctoral dissertation, Technical Report 90-17, Department
of Information and Computer Science, University of California, Irvine. Also appears as
Monograph 90-0002, Institute for Research on Learning.

49

if



Hall, R. (1993). Representation as shared activity: Situated cognition and Dewey's
cartography of experience. Presented at 1992 AERA meetings, San Francisco. Technical
Report, Institute for Research on Learning.

Hall, R., Kibler, D., Wenger, E., & Truxaw, C. (1989). Exploring the episodic structure of
algebra story problem solving. Cognition and Instruction 6(3), 223-283.

Hall, R. and Stevens, R. (to appear). Making space: a comparison of mathematical work in
school and professional design practices. To appear in S.L. Star (ed.). The cultures of
computing. London: Basil Blackwell.

Henderson, K. (1991). Flexible sketches and inflexible data bases: visual communication,
conscription devices, and boundary objects in design engineering. Science, Technology,
and Human Values 16(4), 448-473.

Hutchins, E. (1990). The technology of team navigation. In J. Galegher, R.E. Kraut, and C.
Egido (eds.), Intellectual teamwork, 191-220. Hillsdale, NJ: Lawrence Erlbaum Associates.

Kintsch, W., and Greeno, J.G. (1985). Understanding and solving word arithmetic
problems. Psychological Review 92(1), 109-129.

Kitcher, P. (1984). The nature of mathematical knowledge. Oxford: Oxford University
Press.

Lave, J. and Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New
York: Cambridge University Press.

Mayer, R. E. 11981). Frequency norms and structural analysis of algebra story problems
into families, categories, and templates. Instructional Science 10, 135-175.

MMAP (1992). First year report to the National Science Foundation. Institute for Research
on Learning.

Nardi, B., Miller, J. (1990). The spreadsheet interface: A basis for end user programming.
Proceedings of Interact '90, 27-31 August, Cambridge, England, 977-983.

(1991). Twinkling lights and nested loops: Distributed problem solving and
spreadsheet development. Internatio7a1 Journal of Man Machine Studies 34, 161-184.

Nathan, M.J., Kintsch, W. and Young, E. (1992). A theory of algebra word problem
comprehension and its implications for unintelligent tutoring systems. Cognition and
Instruction 9(4), 329-389.

Reed, S.K., Dempster, A., and Ettinger, M. (1985). Usefulness of analogous solutions for
solving algebra word problems. Journal of Experimental Psychology: Learning, Memory,
and Cognition 11(1), 106-125.

50

5



Sing ley, M. K. and Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA:
Harvard University Press.

Suchman, L. A. and Trigg, R. H. (1993). Artificial intelligence as craftwork. In J. Lave and
S. Chaiklin (eds.) People in activity. New York: Cambridge University Press.

Suchting, W. A. (1992). Constructivism deconstructed. Science and Education 1(3), 223-
254.

Swetz, F (1987). Capitalism and arithmetic. La Salle, IL: Open Court Publishing Company.

Thompson, P.W. (1992). The development of the concept of speed and its relationship to
concepts of rate. In S. Hare! and J. Confrey (eds.) The development of multiplicative
reasoning in the learning of mathematics. New York: SUNY Press.

Thompson, P.W. and Thompson, A.G. (1992). Images of rate. Paper presented at the
annual meeting of the American Educational Research Association, San Francisco, CA.

Vergnaud, G. (1982). A classification of cognitive tasks and operations of thought
involved in addition and subtraction problems. In T.P. Carpenter, J.M. Moser and T.
Romberg (eds.), Addition and subtraction: a cognitive perspective. Hillsdale, NJ: Lawrence
Erlbaum Associates, 39-59.

(1983). Multiplicative structures. In R. Lesh and M. Landau (eds.) Acquisition of
mathematics concepts and processes. New York: Academic Press, 127-174.

von Glasersfeld, E. (1991). Radical constructivism in mathematics education. The
Netherlands: If ruwer Academic Publishers.

Walkerdine, V. (1988). The mastery of reason: Cognitive development and the production
of rationality. London: Rcutledge.

51



Algebra, The New Civil Right

Bob Moses
The Algebra Project

Cambridge, Massachusetts*

I would like to put out some ideas which face us, face the country, and also, of

course, face this group. I find it ironic that mathematicians should be so centrally placed in

a national issue. It seems that history has done you a disservice. It has put to you a task

for which you are not prepared. Mathematicians would be the last people that I would turn

to to organize the country. And yet, that's what it seems you have to do.

One way I think about the situation we're in is that we have this kind of moving of

the plates which is associated with earthquakes. These plates move and sometimes they

lead to these earthquakes and houses fall down and people get dislocated. So it seems

that we are living in a time when two technological plates are rubbing up against each

other, living through some of the earthquake-type phenomenon which has resulted from

thisthe movement from industrial tecnnology into a new information age based upon

computer technology.

There is a lot of social dislocation which is happening because of this kind of

earthquake-like phenomenon. At least, that is how I see it. So, it's again ironic that the

new technology puts mathematics and science into front and center and, therefore,

requires that mathematicians play a role in stemming this social dislocation for which they

were not prepared. How shall we characterize this? One way that I think about it is that

there is a literacy issue for citizenship. I view myself as working in a tradition in the Civil

Rights Movement which is not really well known. How many people here saw "Eyes On

the Prize" or some segment?

Well, "Eyes On the Prize" is a documentary of the Civil Rights Movement. It was a

6-hour documentary dealing with the Civil Rights Movement in the early sixties put on PBS

about 3 or 4 years ago and is replayed every year. You really need to see it. It usually

Taken from Ilia address at the SUMMAC II Conference held on November 6, 1993.
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comes on in February, 13Iack History Month time, but other stations do it at different times

around the year. So you need to keep an eye out for it.

"Eyes On the Prize" puts forth a certain myth about the civil rights history. I think

of it as our first visual history book. It's a product of the new technology. It puts forward

the idea that we might have different kinds of people being historians; that the person with

the camera will also be an historian of the future; that the new technology allows us to

record enormous amounts of visual data in small spaces, and opens up the issue of "Well,

what is a history book?".

I mention it because I took issue with Henry Hampton who developed "Eyes On the

Prize." I said, "Look, Henry, there is a part of the history that you are not telling." Henry's

point of view was that if someone didn't capture it on film at the time in which it

happened, then it didn't happen That is, you couldn't tell about it. You couldn't put it in

an interesting way on film to a mass audience. So, the "Eyes On the Prize" visual history

book tells one myth about civil rights history. And it is a myth which deals with the

history of great campaigns, March On Washington; Birmingham; the Voting Rights March

in Selma, Alabama; Albany, Georgia; Freedom Summerbig campaigns of the Civil Rights

Movementand the person who came to symbolize such campaigns, Dr. Martin Luther

King.

There is another myth about that history, and I consider myself to be a part of a

legacy of that myth. That's a myth dealing with the organizing aspect. The part that did

not get on film. Remember in the 1960s the nation was cutting its teeth with its TV

programs. So, you had three major networks, and they were learning how to do TV. They

learned using the Civil Rights Movement and its campaigns. But they did not pick up the

organizing efforts which undergird those campaigns, and that's the tradition that I came

out of.

Ella Baker, who was the person who helped found Dr. King's organization, sort of

provided the model for us. The idea that leadership could be found in and among what we

call grassroots people. That it was important to keep working with grassroots people to

help develop the leadership from among them. That is the tradition that I came out of in

the Rights Movement. It's an organizing tradition. It's a tradition which tries to stake out

some problem around which there is consensus and builds to see if there is a way to find a

solution to the problem.
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In those days the issue was the Right to Vote, the question was Political

Access, and associated with both of these was a literacy question around reading and

writing. In these days there is another issue which is math and science literacy. It is

associated with, not political access, but economic access. At the center of it as it is

constituted in our society are you folks, mathematicians, and the question about algebra. I

look at the work I am doing today as a continuation of the work that we did in the sixties.

That is, certain people in Mississippi were serfs, people who were living in serfdom on

plantations. They basically had no control over their livestheir political lives, their

economic lives, their educational lives. So, within our industrial society we had this sort of

microcosm of serfdom that we permitted to thrive-, and the movement used the vote and

political access to try to break it up.

It seems to me that we are growing these serf-like entities or neighborhoods within

our cities today. We have within our midst, I think, a process of criminalization of our

neighborhoods. I find an analogy to that with what we found in the Mississippi Delta

plantations. We learned some things that we could do to change Mississippi. One of the

things we learned was that if somehow there was a consensus that everyone agreed that

we should do item "A," this consensus provided some base for strategy and action to try

to work our way out of the problem. What everyone agreed to in Mississippi was that the

vote would help.

So for a short period of time, all of the people who were acting to try to change

Mississippi agreed to work together on a common program to get the vote. That enabled

us to get resources from around the country to come and work with us, because they

could all work on the same program.

Now, it seems to me there is a similar type of agreement today around math. That

is, everyone agrees that if we can teach these children this mathematics, and let's suppose

we agree about what the mathematics is, but if we can teach these children this

mathematics, then we ought to. There seems to be universal agreement about this, that if

we can do it, we ought to do it.

That's a basis. If we can get some consensus about how to work this, and

granted, there is the issue that Paul Sally raised about "keeping the math honest" and the

issue about "a truly objective standard," I think those were his words. But I think there is

an opening here if somehow we can get consensus, and you people here are critical to the
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fashioning of such a consensus. So, I don't want to let you off your task. That is, it is

really critically important that you fashion a cunsensus. It isn't fun and games. And no

one else can do it. For good or for bad, this ball has been tossed in your laps. It isn't

something I would have chosen to do. As I said, the mathematicians really are not

prepared for this job. Your training as mathematicians didn't prepare you to organize.

But, the first job of the organizer is to flesh-out a consensus. You cannot move this

country, unless you have a consensus around which you are going to move them. The

country's too big, too huge, too diverse, too confused. Now, that's part of what we

learned in Mississippi. We learned, and I am saying we learned it on the ground...running.

We learned that if we could fashion a consensus which everyone agreed about, then we

could get resources and develop strategies to try to work our way out of this situation.

Now, that's one thing, this legacy and a parallel between it and the situation we

were in Mississippi, and I am just trying to show you how I look at this, these issues, and

the right to vote; and political access; and political freedom; and this situation we have in

the country; and the idea of citizenship which now requires, not only a reading/writing tool

but a math/science tool.

The subject of math literacy and economic access, that is how are we going to give

hope to the young generation. I think of them as imploding. Los Angeles exploded for a

brief second and everyone got concerned, concerned about the trials and all of that. But

those of us who live in these neighborhoods, we are watching them implode all of the

time, everyday. They are imploding. The violence and the criminalization is people eating

each other up inside. There are all the issues about band-aid solutions, about how do we

patch up, how do we build more jails, how do we put more police on the streetworking

at the problem from the back end to try and keep it manageablekeep the lid on. But

working it from the front end to try and put something in place which we know has to be

put in place if there is going to be some light at the end of this tunnel rests with us. The

front end of this problem rests with the people who hold the key to the mathematics

education of the youngsters.

Thai's a new problem for you. Its a new problem for the country. The traditional

role of the mathematicians has been to find the bright young math potentials and bring

them to your universities and help them become mathematicians and scientists. It hasn't

been a literacy effort. There is a difference between doing projects and doing systemic
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change. As a country, we don't know how to do systemic change. We don't have any

track record. We can't point to any school system where we put through systemic change

around the math education in that school system.

How are we going to do that? That's the issue that confronts us. I think the first

step is to try and get hold of that as our issue. That's our problem and it is related to the

much larger problem which is facing the country because it's in part going through this

technological shift which is shifting the ground out from under us. My generation, we

grew up with the metaphor of E pluribus unum: Out of many one. If you remember, those

of you who saw "Eyes on the Prize," the metaphor at the beginning of each series is there

are black people marching and then they change into the American flag. That's the prize.

The American flag.

We were the last generation that had our eyes on that prize. The Civil Rights

Movement was the last movement in this country to believe in the melting pot. That we

were to create in America the identity of this American who is fashioned from all of the

different peoples, somehow a new person, an "American" was to be created. The

generation coming up now, they don't have that metaphor. They don't have any

metaphor. That's part of their problem. That's part of our problem. They are a generation

which has to create a metaphor of what it means to be an American. Does an American

speak Spanish and no English? Does an American speak Chinese and no English? Is it

possible to take many different peoples and find some common identity? That is, if we are

going to retain our different cultural heritages, is there some unity in all this diversity? Is

there enough there to hold the country together? It's a different question that this

generation has to wrestle with. And it's a question that's driven by the same forces that

are driving math to be a central element of school education along with reading and

writing.

These are very deep problems. They are not going to be solved over night. But the

question is, "Is there some strategy that this group has for making sure its contribution,

which really now turns out to be central, counts?"

There is discussion about process and the National Council of Teachers of

Mathematics (NCTM) Standards. Irvin Vance said that one of the good things about NCTM

Standards is that they raise the question about math for everyone. The technological shift

is also a shift from technology that deals with physical work to technology that deals with
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mental labor, mental products. You have in the industrial technology, machines trying to

routinize physical labor. But computers aren't doing that. Computers are dealing with

products of the mind, forcing the issue of critical thinking, because you are no longer trying

to get the kids to learn how to do the "purple sheets," as Irvin said, "the drill and kill."

Computers are forcing on education the issue that it has to produce graduates who can

think in a critical way with quantitative data. This brings in process and something like the

NCTM Standards.

So, we are not going to escape from this issue about process. But are we going to

be able to handle it? Because if you say that, well they have to get to the content at some

time. Who are we going to look to to tell what that content is, if not this group here? But

do you have a consensus about it? Do you have some idea about what that content needs

to be so that the children on the receiving end are viable? We are not just talking about

professionals and jobs, we really are talking about democracy and citizenship. What is the

content of the democracy going to be in this country?

These are heavy issues to lay on a group of mathematicians. But it seems again

that history has played this trick on us and put mathematicians in this sort of critical place

around the question of the democracy of this country, because this math/science tool is

really assuming as important a place as reading and writing assumed in the old

dispensation. And those people, we know who didn't have that tool, they really were not

citizens.

Just think about Washington, DC. On the TV last night I think they said the murder

toll had gone up to over 400 and nobody blinked an eye. They have these schools and the

principals are saying, "Can you really expect me to secure this school?". It's not

conversation about education, it's conversation about this criminalization of the schools.

I should say a word about the Algebra Project because I am able to come here and

talk to you like this because we have this Algebra Project.

My family had been living in Tanzania for about 6 or 7 years, fleeing the political

events of this country. Three of our children were born there and our youngest daughter,

Malaika, was born in June of '76 about a month after we came back. We wanted to put

our children in the public school system, but we wanted the school system to work for the

children. So, within that arrangement my job was to look after their math. So, I undertook

to working with the children as they went through the grade school years with their math.
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We have two girls and two boys. Maisha is the oldest and Omowale, who is next, is here

with us. I have to warn you he plays basketball.

We had a long discussion this morning about athletes. He is also trying to do a little

math while he is here at GW (George Washington University). But there is an issue about

coaches and math which surfaced this morning. Let me just say, when that issue

surfaced, people were saying that the reason they use coaches to teach math is because

they need math teachers. I stood up and gave a comment, an elliptical response that no,

the reason they use coaches to teach math is because they think that they don't need

math teachers. So, therefore, you can use a coach to teach math.

I was serious. Part of the reason we are in the trouble we're in is because we don't

train elementary school teachers to be math teachers. So we use coaches.

Anyway, Omo and I have slugged it out over the years about doing his math and

whether he had to be in the same math course that the other guys on his high school

basketball team were in. Why should he be in a different math course than the rest of his

teammates? If it was okay for them to take a certain course, why wasn't it okay for him?

So the Algebra Project grew as a family project. We slugged it out in the family.

We're still slugging it out.

Then it got into the school system when my oldest daughter was ready to do

Algebra, and they weren't offering it, so in a nutshell, I went into the classroom. I was

able to do that because I had a McArthur Fellowship that came through at that time in

1982. I used it to teach Algebra. I went into the classroom for 5 years with that

fellowship and taught Algebra as a parent volunteer to Maisha and Omo and then Taba and

Malaika. To all my children and all of their classmates. Out of that then came the

question of who takes Algebra, who gets access to Algebra, and how do we address the

question of math literacy. Out of that came the Algebra Project which now has spread

around the country and is trying to take root in different cities around the country.

I suppose if I think about it, I would think of it in a metaphor that the project is sort

of like a young kid who is trying to stand up and is teetering and falling down a little and

getting back up, falling down a little and getting back up. What I hope is that the project

has the same kind of perseverance that makes young children keep getting back up. And

then the same kind of perseverance that makes them eventually walk. So they keep
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walking until they learn how to walk. It doesn't really matter how many times they fall

down, they keep getting up and walking.

Pobably part of the reason that happens is they have a lot of people around them

who are also walking. Unfortunately, we don't have that in the Algebra Project. That is,

there are not a lot of projects around which are looking at this issue of literacy and how

you make systemic change in schools. I am hoping that the project will have the kind of

perseverance that young people have so that it will keep standing up every time it falls and

eventually learn how to walk.

In the Algebra Project we do training. As Paul Sally, who helps us in Chicago,

reminds us, there are two types of training that we need to do. There is training in specific

curriculum, and for us we have our own little curriculum in which we do some training.

Then teachers need training in the background of matheMatics. Paul has helped on this

second issue; he has his own history, as you know, of training teachers. But he has also

been working specifically with Algebra Project teachers in Chicago. I would like to raise

this issue with you because there is a specific question: How can the mathematics

community relate to a project such as the Algebra Project?

Paul has two courses which he has developed, one on number theory and one on

geometry. He offers each in 10 sessions, across the spring semester to middle school

teachers in the Algebra Project. He offers it to other teachers as well. These are courses

which are trying to address the issue of how middle school teachers fill out their

mathematics background.

Part of what is driving this for the teachers is that the Algebra Project raises for

these teachers the need to fill out their mathematics background in order to successfully

engage the Algebra Project in the classroom. So the question is: Can we develop across

the country a network of people in the mathematics community who would work on this

kind of issue? In this instance, we are trying to pull together a seminar in the summer

where we get mathematicians who come to the University of Chicago to sit down in a

seminar with Paul and look at the issue: How can we develop courses or procedures or

methods for doing the second kind of training with middle school teachers, in this case, in

the Algebra Project? That is some kind of network around the country. So this is one of

the projects that the Algebra Project is trying to do. I think that I will stop here.
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Questions from the Audience
Question

Is the Algebra Project about Algebra or is it preparing students to be able to

succeed in Algebra and, if so, what is it in the students that you are reaching to that the

rest of us haven't been?

Answer

What is Algebra? When Omo was a sophomore and he was in Cambridge High

School and he was taking Algebra II, of course he had taken geometry as a ninth grader

because he had passed the citywide test for Algebra after his 8th grade, he came to me

and he said: Why do I have to do Algebra II because all the other players on the basketball

team are not doing Algebra II? Why do I have to do this?

We had it out head to head that this is what you have to do. You need to come out

at the ind of high school with your college basketball scholarship true, but you've got to

be ready to go into college with the kind of background in these kind of subject areas.

There has got to be a product on the other end from my point of view. In other

words, there is a way for the project to fail. If the project doesn't get students who go

through the college-prep math sequences and come out on the other end and enter college

ready to do mathematics for which they can get college credit, then it fails.

To do that, we are making an intervention at the 6th-grade level. For historical

reasons, it began at the 6th-grade level. I think of the intervention as an intervention

which is saying, if a student can count and if we can get their attention, then we can get

them on this college-prep track. The hardest thing is to get their attention. But if we can

figure out a way to do that, then there is a way to get them on the track where they can

get through their middle school years and get ready to do the college prep math sequence

in high school. That's the goal. That's what we are setting out as a goal. We are saying

that this is a goal for all of our students. That is, there's got to be a floor. It's not the

ceiling. It's the floor. We're not saying anything about the 2 million that I just heard we

have in this country who are gifted and talented students, and we are not doing right by

them.

I am not saying anything about what should be done for the 2 million. It's not the

ceiling, it's the floor. We are trying to say we need to put a floor under all these students
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and the floor, as I mentioned, has to do with these enormous issues about citizenship and

democracy.

Content-wise what we have said is that at the 6th grade we are trying to help

students get a more general notion of number. So if you just look at what is driving the

6th grade curriculum, it is the idea that in arithmetic, students have a question in their

mind about numbers which roughly is a "How many?" question. They pick it up when

they learn how to count, how many fingers, how many toes, and we're trying to put

another question in their mind about number which roughly is a "Which way?" question in

a directional tense.

Having a more complex set of questions around their number question, we are

trying to change their metaphor for subtraction and addition. So instead of having a "take

away" metaphor for subtraction based on a "How many were left?" question, we want a

metaphor for subtraction which is based on a comparison in opposite directions. How do

we get direction into their subtraction concept and into their addition concept?

I really don't care whether people say that's Algebra or not Algebra, that's what we

are trying to do in the 6th grade. We are trying to get them to make a shift in their number

concept and in their subtraction ar,ci addition concepts. Then we have some other stuff

we try to follow that up with: multiplication and division in the next grade.

This floor, the college-prep math sequence, is itself a moving target. But that's

okay. The image I have here is that if you are trying to catch a bus that is moving, you

just can't stand still and as it passes by try to grab hold. You'll loose an arm in the

process. What you've got to do is as that bus is coming, you start running. And if you

get close to the speed of the bus, then you can hop on.

The students today have got to hop onto one of those college-prep math sequences

that are out there now. If they don't, that other one you guys are trying to think of as the

one that should be in place for the 21st century will whiz right on by them. They won't

have a chance in the world of getting on to that.

So in our program, what we are saying is that we need to get the kids ready for

whatever is out there, they need to lock in on the idea that they should do the college-prep

math sequence, and they keep locked in on that like some laser beam. However that

sequence changes, however it evolves, whatever kinds of transmutations it goes under,

they stick with it. And they pass the word on that this is what you've got to do.
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We're just saying that this is the floor. It's got to be done. Currently 11 percent of

the students in the country finish pre-calculus and 3 percent of those do calculus. We are

saying whatever that is, that's the minimum. Everybody needs to do that. The country

has to take seriously that this is now a literacy effort. It's not creaming. Everybody has

got to do that.

So, here you come to a great crisis in belief. Who believes that all these kids can

do this? The only thing that has given us some play is that we stepped in there with a

little piece of curriculum at the 6th-grade level and said hey, these kids can do this much.

And, if they can do this much then they can think of themselves and we can get them

moving to do this much more. So that's my answer to that question. I'm not sure if it's

an answer.

Question

In short, is there some elaboration on this which is available in published form,

either some materials that you have developed or something that someone has written so

that we can learn more about what it is that you are doing on the ground?

Answer

I will give out a phone number, but be warned we are not heavily funded. So, our

office staff in Cambridge is really bare bones. The number is (617) 491-0200. That's the

phone number of Algebra Project, Inc., which is a little small group at our central office.

There is some literature which we will be glad to send you. We don't have back logs of

the student text. There is a student workbook and text. What we do is negotiate with

school systems who want to do the project so they get a copy and then they print it

themselves. I don't know what would happen if we got an order for a large number of

those textbooks. We are not really equipped to handle that.

There is another problem which is serious and on us. What happens to these kids

in high school? It is the universities that have whatever kind of contact is going on with

the high school teachers of mathematics. We are not even thinking at this point about

trying to look at high school curriculum or training high school teachers. We can't do it.

We're not equipped to do it. So, how can the university communicate with

mathematicians? How can they help with this issue of working the high schools? Those

are two really concrete issues that I think this group could help us with.
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Question/statement

First, just a little story which perhaps might amuse you, when I told my husband

that I was coming here to listen to you and have lunch he said with a smile, "You know

that man is upsetting a whole neighboring state: Mississippi." He grew up for decades

with Arkansas second to the bottom in education, literacy, per capita income, whatever.

The saying was "Thank God for Mississippi." He said, "Bob Moses, he's going to upset

this apple cart!: by the extraordinary work that you are doing in Mississippi. So that was

a backhanded compliment.

Answer

Well, we might work in Arkansas.

Reply

Well, that was his next statement. Please come to Arkansas. Being a non-

mathematician, one of the things that I have truly admired and respected about your work

is that you have taken mathematics, through your work in using non-mathematical

methods and areas and disciplines, and have made math more a part of a larger learning

process. I was just wondering whether you had any plans to work with that non-

mathematical world in a greater way to make it even more an integrated kind of studies.

Answer

There is an effort. We have a curriculum which we are getting ready to try to pilot

which is called an African Drum and Ratio's Curriculum. The idea in this curriculum is that

children learn certain competencies on the African drum, and some of the African drum

family. Then they try to abstract certain mathematical concepts out of these practices.

We are targeting that for 4th and 5th grades. In doing that we are thinking that this could

drive a larger integrated curriculum. There is the. obvious area of selecting some African or

African/Caribbean culture which becomes a part of the study at that grade level.

Then there is the issue such as information systems. That is, the drum is an

ancient system of transmitting information over distance. Therefore, it opens up the idea

of a larger look at what are the different ways in which information is carried today as a

part of a larger interdisciplinary structure. There is also the question of rhythm, which is

so prevalent in music, and also in science and in life in general. So, how would you use

this as a way to drive an interdisciplinary curriculum at that grade level around those

concepts?
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We are trying to see if we can get some funding to actually do a training this

summer. We figure we need at least 6 to 8 weeks to do a training to try to develop a

basis for that as a pilot.

This raises the general question about how to teach math. There was the question

this morning about process and the NCTM Standards. If you think about epistemology and

how to go about teaching math, I think we inherited a way of Ppproaching it which says

that we should start with what is simple. The problem is that most of what is taken as

simple is also very, very abstract. The idea of building the mathematics curriculum around

what is simple and abstract is one approach. That is not the approach which we are

taking.

The approach that we are taking is along the other axis. That is, if you think of

simple as opposed to complex, and abstract as opposed to concrete, we are looking to

develop curriculum which finds the right leiel of complexity in concrete events. We are

not building the curriculum around concepts which are simple and abstract. We are trying

to build a curriculum around events which are concrete and complex. And the question is

the right level of complexity.

So, when you look at this as a jumping-off point for curriculum, then you are in very

different terrain. The question then is: What are the concepts that you want to teach and

what are the events which can be the jumping-off point for those concepts? It is in that

sense that we are trying to engage the non-mathematical world, as you call it, in a very

general sense in this curriculum process. We are just exploring this. We have just, sort of,

gotten our toes wet about how to go about developing this kind of curriculum.

It would seem that one of the advantages in doing this, or approaching curriculum

this way, is that you have a chance at getting the student's attention. Then the issue is:

If you can get their attention, how do you move them through to get the mathematics out?

What we have done is maybe unique.

I came across the literature of the philosophy of mathematics in the writing of

Quine. Some of you know Quine, he is a math logician at Harvard, Emeritus now. In his

writing he talks about mathematical logic as involving a regimentation of ordinary

language. So, he speaks about regimented language and regimenting ordinary language to

develop the language of mathematics. There is this famous debate between Quine and

Alonzo Church. Church is a math logician at Princeton, or at least he was when the
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debate was going on. They were arguing about the existential quantifier. Church was

taking the position that the existential quantifier acquires its meaning from the axioms in

which it is embedded. Quine was taking the position that the existential quantifier acquires

its meaning from the logician who had in mind the ordinary language there is something

such that and that's how it gets its meaning.

look at that discussion of Quine and Church as the 20th century version c1 the

19th century discussion between Hilbert and Frege. Frege, who was the chief logician in

the 19th century, wrote to Hilbert that the axioms of geometry are consistent because

they are true. Hilbert wrote back and said, "My God, for as long as I have been teaching, I

have said exactly the opposite. The axioms of geometry are true because they are

consistent." It was Hilbert's point of view about mathematics that won out. Church then

inherited Hilbert. So the meaning of the existential quantifier is embedded in the axioms.

Quine is inheriting the 20th century version of Frege. Quine doesn't believe truth as Frege

saw it. He has his own version of truth, but he is saying that meaning is attached to

language and discourse and so forth.

The version of math that is taught to the kids in the school began after Sputnik in

1957. I was teaching at Horace Mann when Sputnik broke out. Right after Sputnik in

1958, I used to go down to Columbia University when Professor Fehr was holding forth,

teaching students math and so forth, and I was a teacher from Horace Mann going down

there to do courses. I was looking through the School Mathematics Study Group

[materials] and Max Beberman's mathematics reform effort, the Madison Project and the

Syracuse project, and I was taking all of these back to my classroom at Horace Mann and

doing them with the kids. Looking back on all of that work, that work was predicated on

the line of thought coming from Hilbert and Church and those people on the simple and

abstract.

So, Beberman was actually teaching the children about equivalence relations: that

they are symmetric and transitive, and reflexive. He was building the integers by

partitioning the set of natural members and gt sting your ordered pairs of integers from the

equivalence relations. I actually taught a course at the 9th grade level. I was moon

lighting those texts, so I took Beberman's text out and had the 9th graders doing

equivalence relations of all kinds, and this business about partitioning the set in

constructing the integers. So, that's one approach.
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The Algebra Project is looking at a different approach. It is not the simple and the

abstract and consistency, but complex and concrete and truth. Science has these.things

which they call observation sentences. Physics may have these big theories and so forth,

but it's got to have some kind of observation sentence against which you test these

theories. My thinking is: How do we get the kids to develop a set of observation sentences

which are the grounding for more abstract mathematics? Every Algebra textbook in the

first few chapters has this little sentence "A minus B = A plus the opposite of B." The

book somewhere says, in algebra, subtraction is the same as addition, more or less. The

student, of course, has been spending years learning that that's not true. The student

learned that subtraction is one operation and its metaphor is take away, while addition is

another operation and its metaphor is piling stuff on. The book never says how these two

metaphors are related. All the book says is that this syntax over here can be changed to

this syntax over there. So that book is, in my mind, in the Hilbert/Church tradition, of the

simple, abstract, consistency. It's not in the tradition of Frege, Quine and looking at truth.

It doesn't give the kids anything. That little sentence I look at as a high level theoretical

sentence in the Algebra I textbook. It's not an observation sentence. There's nothing that

the kid can take from that and go test it against any experience and see whether or not it's

true.

My problem is: How do we provide for the students a whole complex set of

observations sentences out of which they could abstract this high level theoretical

sentence which is "A minus B = A plus the opposite of B."? The kids need truth and

experience. They need some level of complexity which they can use to test against events.

That's how I view the problem of constructing curriculum in mathematics. Viewing it that

way gets us into these other areas of knowledge and human endeavor.
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Issues Surrounding Algebra

Elizabeth Phillips
Michigan State University

I come to this conference as chair of the NCTM Task Force on Algebra; but I wear

many other hats concerning algebra. One of my responsibilities at Michigan State

University is to upervise and coordinate the teaching of the Intermediate Algebra course.

This fall (1993) we have 64 sections ( 35 students each) of Intermediate Algebra; these

students come to us with 3 and 4 years of high school mathematics. A greater part of my

responsibilities are in the area of mathematics education, and many of my efforts in this

area are related tc, the issue of why students are entering the university with 3 and 4 years

of mathematics and yet have to start all over. Over the years this has led me to search for

answers to the following questions:

What is Algebra?

What are the important ideas and processes in algebra?

What does it mean to understand these ideas and processes?

How do we teach for understanding?

How do we assess these understandings?

How do we implement change into the mathematics classroom?

These questions have played an important part of mathematics and mathematics

education courses that I teach for preservice teachers and have played an important role in

shaping several professional development projects: the Algebra Workshop (codirected with

Glenda Lappan, 1986-88) was a 2-year project designed to develop a cadre of leaders to

help implement a vision of algebra that was based on conceptual understandings; the

Making Mathematics Accessible to All (directed by Chris Hirsch, 1990-present) is designed

to help teams of teachers, counselors, and administrators from Michigan high schools

implement a core curriculum in mathematics. Finally, I have been involved in several

middle school projects; currently the Connected Mathematics Project, which is an NSF-

funded project to develop a complete mathematics curriculum for the middle grades of

which algebra is an important strand.
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I continue to seek answers to the above questions as 1 wrestle with how to teach

algebra to college students who come with many misconceptions and little understanding,

how to educate teachers (both preservice and inservice); and how to develop a curriculum

that provides a solid foundation for algebra, for middle school students and teachers.

Defining Algebra

Except for a brief sojourn into developing mathematics as a structure during the

New Math" era, algebra has traditionally been a symbol manipulation course designed to

give students the manipulative tools necessary for the eventual study of calculus. This

view of algebra and of math in general has not been sufficient and is one of the issues that

provided the impetus for the NCTM Standards for Curriculum and Evaluation. However, as

the NCTM Standards are being implemented, the issue of algebra quickly emerges: What

is algebra? Why is it necessary? How should it be taught? assessed? Instead of presenting

a vision or broad definition of algebra, the Standards describe algebraic processes that

students should have mastered upnn completion of a core curriculum. But the broad,

general goals of the Standards need elaboration in order to be operationalized by a teacher

in the classroom. Such a definition or vision of algebra will be difficult to create because

curriculum leaders, mathematics educators, mathematicians and mathematics teachers

(kindergarten through college) view algebra differently. Various definitions of algebra

rude:

A course with some "mythical" body of knowledge;

A part of mathematics;

A generalized arithmetic;

A symbolic language;

A language that uses verbal, tabular, graphical, and symbolic forms;

A study of relationships, patterns, and functions;

A series of problem-solving strategies;

A modeling process;

A way of reasoning; and

A formal structure.
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Redefining Algebra

We need to define a vision of algebra that will serve a wide population and yet be

specific enough to allow teachers to interpret the curriculum and make decisions. In

developing this vision, some of the issues to be addressed include: How does technology

affect the vision of algebra? What is the role of symbols and/or symbolic thinking in a

technology-intensive society?

Symbol Manipulation

The issue of how much symbol manipulation students need is central to the debate

about algebra. Many teachers claim that very little work with symbolic manipulation is

needed; others, including many university mathematicians, are fearful that students will not

have the necessary symbolic reasoning skills needed to progress in mathematics and

science.

The Standards suggest topics that should receive decreased and increased attention

(by teachers). On the list of decreased attention is "the use of factoring to solve equations

and to simplify rational expressions." Many people will not argue with this statement;

graphing cal, ulators or computers are readily available for solving equations and for finding

the factors o' 1 expression, if needed. Yet for many teachers this statement is still quite

vague is it proposing that factoring not be taught? Students need to model problems

using algebraic expressions and to show that different expressions for the same problem

are equivalent statements. Students may also need to transform equations into a form that

can be entered on a computer or graphing calculator. The distributive property plays an

important role in being able to express problems algebraically, to show that two

expressions are equivalent and to express an equation in a form suitable for the computer.

Factoring is part of the distributive property.

Students who are college-intending need to be able to express statements in

equivalent forms. Reasoning ith equivalent symbolic forms can very often reveal

information that is not apparent in graphs or tables. The Standards suggests that we

decrease the time spent in symbolic manipulations and increase the time spent on symbolic

reasoning. The role of symbols and what we have come to know as symbol manipulations

needs careful discussion. How much symbolic transformations or manipulations are needed

to reason effectively with symbols? Consider the following example:
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Example 1.

Problem: The cube pattern below is made from unit cubes. If the pattern continues, how

many cubes will it take to build the next two buildings? How many cubes will it take to

build the Nth building?

Figure 1

Solution: A class of preservice elementary teachers were given this cube pattern and

asked to explain the reasoning they used to generalize the problem. The following is a

sample of how students thought about the problem:

Students' Generalizations

1) 1 6 18 40 75... N2 ((N + 1))/2

This student looked for patterns in the sequence of numbers which correspond to the

number of cubes in each building.

2) 1x1 2x3 3x6 4x10 5x15... N (IN(N + 1)1)/2

This student recognized that the number of cubes of each building was a multiple of a

triangular number (or the sum of the first N counting numbers).

3) 1(1) 2(1 + 2) 3(1 + 2 + 3)... N(1 + 2 + 3 4. 4 +...+ N)
This student recognized the number of cubes in the front face of each building was the

sum of the counting numbers 1 to N and that there were N faces (layers).

4) (1 x 1 x 21/2 (2 x 2 x 3)/2 (3 x 3 x 4, 21... (N x N x (N + 1))/2

This student built a rectangular prism with dimensions N, N, and N + 1. The volume

of the prism is N x N x N 1, but this number is twice the number of blocks as in the

original building, so he divided by 2.
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5) (1)(1) (1 + 2H2) (1 + 2 + 3)(3)... (1 + 2 + 3 +...+N)(N)
The number of rows x the number of blocks in each row

This student focused on the number of rows in the Nth building which is (1 + 2

+... +N) and noticed that there are N cubes in each row.

6) 13 -0 23 2 33 9... N3 ((N(NIN 1)1)12

This student built a cube of dimension N and then subtracted off the extra rectangular

prism.

7) Kelly's conjecture: N2 + ((N 1)[(N - 1) + 11)12 + (N- 1) [(N - 1) + 11IN 1)12

This student thought of the base as a square (rectangular prism with a square base and

a height of 1) and then the rest of the building as two more prisms.

Discussion: How much symbol manipulation is needed to model a problem? Which

symbol representation should we use? The first question is an open question, particularly if

the pattern one observes is more complex as in Kelly's conjecture. While all the

generalizations above are equivalent, several of them are quite different in form. The table

and graph of each are identical, but each symbolic form represents a slightly different

aspect of the cube pattern. So which representation one chooses depends on the

particular aspect of the pattern that one wishes to observe.

On a simpler note, the two expressions, 1 1/n and (n 1)/n are equivalent

expressions, and they have the same table and graph. However, symbolically each

expression emphasizes a slightly different mathematical application.

When asking students to find the number of handshakes that will occur between N

people, some students will argue that each of the N people will shake hands with N 1

people, but that each handshake is counting twice. Thus, the number of handshakes is

(N(N - 1 ))/2. Other students might observe that the first person will shake hands with N - 1

people, the second person will shake hands with N - 2 people, etc.so that the total

number of handshakes is (N 1) (N 2) +... +1. Thus, we have ((MN 1))/2 = (N- 1)

+ IN 2) +... +1equivalent expressions, but each represents a different way of

thinking about the problem.

The question "How much symbol manipulation does a student need?" is tied to the

broader questions of "How can we develop symbol sense?" "What does it mean to have

symbol sense?"

73



Representations in Patterns and Modeling

With the availability of small, hand-held computers, it is equally important that a

broader view of the role of representations in studying patterns and modeling be included

in a vision statement of algebra. The role of communicating ideas about patterns needs to

include not only symbols but also tables, graphs, and words. The advantages and power of

each need to be appreciated. Consider the following example:

Example 2.

The following problem is easy to translate into symbols. In fact, students can

probably do most of the problem with only arithmetic. For these reasons this problem (or

some other similar settingwalking, running and bicycling rates or the cost of renting

rollerblades) provides an appropriate first entry into developing the characteristics of a

linear situation. If we explore the problem by using tables, graphs, and an equation, we see

that each representation provides insights into the rate of change (slope) in slightly

different ways.

Problem: The We Try Harder (WTH) car rental agency charges $23 a day plus 20 cents

per mile (plan 1). How much does it cost to drive the car for one day?

Solution: The cost depends on (or is a function of) the number of miles we drive.

Using a table: We can set up a table (figure 2) for the number of miles driven in one day

and the corresponding costs.

Miles Driven
in one day

Cost WTH in
dollars

0 23
100 43
200 63
300 83
400 103
500 123

Figure 2

The table is easy to read. By observing patterns in the table we notice that as the

number of miles increases by 100, the costs increase by $20. This constant difference or

rate of change between the two variables is the main characteristic of a linear situation.
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Using a Graph: If we graph the set of data in the table, we obtain a straight line. The

graph is more complete than the table. It is easy to read either the cost or the number of

miles. The rate of change between the two variables or slope is seen in the steepness of

the line and in the difference between corresponding coordinates of two points.

Miles per day

Figure 3

Using an Algebraic Equation: The relationship between the cost and miles can be

expressed as an equation. If we let Cost(m) represent the cost to drive m miles in one day,

then

Cost(m) = 23 + 0.20 m

The rate of change or slope shows up in the equation as the coefficient of the variable m.

The constant, 23, in the equation can be related back to the graph as the y-intercept or the

point (0 miles, $23) and in the table as the fixed per day cost of $23.

Discussion: The slope is represented quite differently in each representation. Each

representation helps to shape an understanding of slope, y-intercept and the relationship

between the two variables. If we change the parameters of the problem and look for

patterns, we continue to develop an understanding of linearity. For example, if the WTH

Agency drops the fixed charge of $23 a day (plan 2), then entries in the cost column in the

table (figure 1) shift down by 23. But the rate or the slope stays the same. For every $20

we can drive 100 miles or $20 per every 100 miles or ($20)/(100 miles) = (20 cents)/mile.
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If we graph the data for this new plan, we obtain a line which is parallel to the

origin& line, but goes through the origin. This line has the same steepness or slope as the

line obtained for the data in the first plan. The two lines are parallel. Similarly, we can

change the cost per mile and observe the changes in the three representations.

An important step in understanding linear functions is to be able to recognize the

linear relationship in a problem; the rate of change between the two variables is constant in

various representations. An equally important step in recognizing linear situations is to

study examples that are not linear. Comparing linear growth and exponential growth are

interesting situations to use for this purpose.

The power in doing mathematics comes in recognizing a familiar pattern. However,

in Example 2 it is easy to translate from the words directly to symbols. Students need the

opportunity to investigate situations that can not be directly translated from words into

symbols. As an example, consider the problem of investigating the surface area of a stack

of Cuisenaire rods of the same color (figure 4).

Example 3

Stacked Unit
colored rods rod

Each rod is 4 units long, one unit high and one unit wide.

Figure 4

Discussion: Some of the symbolic representations that students have used are:

[2 + 4(n 1)](1) +[4 + 2 VI 1)](4)

18 + 12(n 1)

2[4(n) + 1(n) + 4(1)1 + 2(n- 1)

4[2n + 2] + 2(2n 1)(1)

12n + 6
The pattern is linear, but it is not observed from the statement of the problem. Students

either generate a table of values and recognize that it is linear or they observe
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some features of the patterns and translate it into algebrasimilar to the processes used

by students for the cube pattern in Example 1.

Technology Manipulation

The availability of graphing calculators has caught the attention of mathematics

teachers in ways that no other piece of technology has done in the past 30 years. NCTM

has made three important statements concerning the impact of technology on the

mathematics curriculum:

Some mathematics becomes more important because technology requires it.

Some mathematics becomes less important because technology replaces it.

Some mathematics becomes possible because technology allows it.

We need to address these statements in more specific ways. What mathematics is more

important? What mathematics is less important? We also need examples of curriculum

that use technology in ways that provide deeper understandings of important concepts. It

is crucial that we address these issues soon. Some curricula are being implemented that

claim to use technology, but in fact the focus is on "how to use the graphing calculator."

There is a danger that we could be replacing abstract symbol manipulation with equally

abstract algorithmic techniques on how to use the graphing calculator (or computer).

The role of technology needs careful discussion; "What does it mean to have

graphical sense?" "How do we develop representational sense?"

Toward a Teaching Strategy

There is no area in which the study of patterns is as fundamental as it is in

mathematics. Mathematicians observe patterns; they conjecture, test, discuss, verbalize,

and generalize these patterns. Through this process they discover the salient features of

the pattern, construct understandings of concepts and relationships, develop a language to

talk about the pattern, integrate, and discriminate between the pattern and other patterns.

When relationships between quantities (variables) in a pattern are studied, knowledge

about important mathematical relationships and functions emerges.

To help students learn the important concepts and processes of algebra, it is

important to start with problems that embody an important concept or strategy. As the

students seek answers to the problems they observe patterns and they reason and

communicate about these patterns to develop understandings. The Car Rental Problem

(Example 1) is an example of starting with a problem to introduce the idea of linearity.
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When students recognize this pattern in another situation, they very often will remark "this

is the Car Rental Problem!"

Problems embody the concept or the process. Solving a problem leads to more than

an answerit leads to knowledge and understanding.

Defining Algebra for All Students

Algebra has played the role of "gate keeper" for far too long. The focus should be on

what all students will know at the end of high school. A vision statement must stress the

knowledge of the basic concepts and processes of algebra that are essential for all

students.

What core of algebraic knowledge will serve students graduating from high school

who will be going directly to the work force, or to some technical college or to a

university, including liberal arts and science majors?

What teaching strategies are needed to ensure that all students have access to

this knowledge? How will students be assessed?

Does the vision of algebra allow for the development of algebraic knowledge

throughout the K-12 curriculum?

The following working definition of algebra was developed by the NCTM Algebra Task

Force. We welcome your reactions.

Toward a Working Definition of Algebra

After a lengthy discussion, the NCTM Algebra Task Force committee agreed that

there is a need for a well-developed and clearly articulated national vision of algebra which

establishes the necessity of algebra for all students, and an elaboration of that vision with

specific discussions of the important ideas, strategies, and processes it includes. The Task

Force recommends that NCTM sponsor a series of conferences to present a national vision

of algebra and develop strategies for its implementation. The following definition was

drafted by the NCTM Algebra Task Force:

A. The Vision: Algebra is a study of patterns/relationships and functions which uses

a variety of representations including verbal, tabular, graphical, and symbolic.

B. These representations make it possible to:

Use technological tools effectively;

Communicate, analyze, and interpret information;
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Formulate and solve problems by collecting, organizing, and modeling data;

Describe important patterns of behavior of families of functions; and

Recognize, interpret, and use discrete and continuous relationships.

C. The vision statement must include the following non-negotiable principles:

A national goal that every student will graduate from high school with the

algebraic skills and knowledge needed to function in our technological society.

Algebra will become a K-12 strand.

Teachers must use a variety of teaching and assessment strategies and tools

to teach and assess algebraic ideas/concepts.

This vision of algebra should be followed by an elaboration of the vision. For

example, the elaboration should demonstrate how problem-solving, reasoning, modeling,

and structure fit within the vision. The elaborations should also suggest what functions and

relationships are considered basic; why they are important; and what is important to know

about these relationships. The Task Force has suggested that linear and exponential

functions (growth) be part of the core curriculum and that quadratic and simple rational

functions be studied more informally. Any investigation of important features of functions

should emphasize rates of change, optimization, and important local and global behaviors.
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Addendum
Issues Surrounding the Topic of Algebra

The following issues were identified by the NCTM Algebra Task Force:

General

Why is there such a large population of remedial algebra students at the college

level, students with 3 and 4 years of high school algebra?

Why is there such a large need for math remediation at the business level?

Why are many states mandating algebra for all studentswhat algebra?

What is Algebra?

What is algebra?

* What are the big ideas? concepts?

What is the core curriculum?

* What mathematics (algebra) should students know and be able to do when they leave

high school?

* College-intending

* Technical 2-year colleges

" Industry and business

Is algebra a course or a strand in the K - 12 curriculum?

What is the role of technology, symbols?

What is the role of concepts, strategies, and processes in mathematics (in algebra)?

Assessing Algebraic Knowledge

How do we assess students' knowledge of algebra?

* What do we do with the consistent low test scores?

Can every student do algebra?

* How do we overcome trackingor is some tracking acceptable in the transition

period providing that students at all levels can truly cross tracks and are held to the

same standards?

How can we help students to appreciate that mathematics requires work and

perseverance?
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Teaching Algebra

How do we package algebra?

How do we deliver algebra?

What are effective pedagogies?

* Are there different learning styles?

* What are they and what instructional systems do we need to accommodate these

learning stiles and the needs of a diverse population?

How do we bring excitement to the teaching and learning of algebra?

Who is teaching first year algebra?

How do we help teachers overcome the "comfort level" they have achieved in teaching

a "skill-and-drill" curriculum.

How will we provide the extensive professional development that is needed to help

teachers adapt to a curriculum based on the NCTM Standards?

Educating the Public

How do we educate the publicadministrators, parents, politicians, businesses,

industry?

* What is happening in other countriesis this useful information?
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Is Thinking About "Algebra" a Misdirection?

Alan H. Schoenfeld
University of California at Berkeley

Many people, including I imagine a quorum of the people at this conference, believe

that much of the problem we face in mathematics instruction has been caused by focusing

on algebra as the narrow band of symbol-manipulation techniques that have traditionally

constituted ninth-grade mathematics courses. It can be argued that focusing on algebra

qua algebra is a misdirection, and that we should be thinking instead of the broad set of

symbolic understandings and uses of them that students should develop in their

experiences with mathematics. So, my main issue is: What should we be thinking about

within the convex hull of algebra-related mathematical stuff? My goal is to raise a few

basic questions related to that issue.

Rather than speaking in abstractions, let me give some concrete examples of

problems that I see as being appropriate and algebra-related for our students. Problem 1

comes from an experimental 6-week unit my research group built as an introduction to

(mostly linear) functions. Problem 2 is pretty standard, and the source of some controversy

related to an innovative high school mathematics curriculum. Problem 3 is one I use in my

undergraduate problem solving course, but there's no reason it couldn't be a mainstay at

ninth grade. I'll give a student's solution to Problem 1, because you should see what

ordinary 9th graders can do. What one can do with Problems 2 and 3 is pretty obvious.

Problem 1.

This was a homework problem from the fifth week of our unit, so the students had

only a brief introduction to graphing prior to working it. They had worked with various real

world interpretations of linear and nearly linear functions, and had drawn graphs of various

real-world phenomena a distance-versus-time graph of a mechanical toy walking on a

more or less straight path).

The problem statement and a solution produced by a student whose grades were

more or less average to this unit follow:
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Write a story that could describe this graph.
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"The Sea Hog (Militaries latest lard powered submarine) is prepared to go.

The Admiral who will navigate the vessel is explaining to the crew why lard is a

better fuel in terms of defense cuts. The Sea Hog sets off. By the time it is 12 miles

out to sea the Admiral realizes that he has carelessly left the weapons back at the

port. He sets back at the same speed he set out at, about 3 MPH (lard is not a very

good submarine fuel as far as speed is concerned.)

"The admiral had called ahead and asked for the weapons to be ready on

port by the time he returned to avoid delay. When he had reached port he didn't

even need to stop or slow down. They just threw the weapons in.

"The sea hog sets out again at about 3 MPH, until again about 3 miles from

shore. Then it was to the Admiral's surprise that this was not really his crew. His

was back at the dock. When the Admiral had returned the submarine didn't even

stop or slow down. The wrong crew jumped off and the right crew jumped on.

After 3 hours it was 12 miles out that it was discovered that there wasn't enough
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lard to make the trip. (I can't tell you where the trip was. TOP SECRET you know.)

They head back and decided to try again tomorrow."

Problem 2.

Consider the standard figures used to give a purely physical proof of the

Pythagorean theorem, such as the one that Bronowsky used for the "Ascent of Man." One

figure shows a square (B-A) on a side surrounded by four (A,B,C) right triangles (A < B <

C), in such a way that the arrangement gives a square of side C. The second is a

rearrangement of the same pieces, where the figure can now be seen to comprise two

squares, one A on a side, and one B on a side. This is a "physical" proof that for this one

figure (and presumably all like it)

A2 + B2 = C2, for which you need only know that the area of a square of side S is

S2, and some subtraction.

There is also a lovely symbol-manipulative proof requiring the first figure only.

Produce it, and explain the connection.

Problem 3.

Take any three-digit number and write it down twice, to make a six-digit number.

(For example, the three-digit number 789 gives us the six-digit number 789,789.) I'll bet

you $1.00 that the six-digit number you've just written down can be divided by 7, without

leaving a remainder.

OK, so I was lucky. Here's a chance to make your money back, and then some.

Take the quotient that resulted from the division you just performed. I'll bet you $5.00 that

quotient can be divided by 11, without leaving a remainder.
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OK, OK, so I was very lucky. Now you can clean up. I'll bet you $25.00 that the

quotient of the division by 11 can be divided by 13, without leaving a remainder?

Well, you can't win'em all. But you don't have to pay me if you can explain why this

works.

Now, I'd argue that our kids should be able to do all of these (and many more of

considerably more diversity), and that they should pick up the skills to do so somewhere in

the K-10 curriculum. The problems are all, for me, deeply connected to some of the

symbolic operations we call alyebra. If our kids had the skills to do thesenot as replicates

of things they'd seen, but as problems they could think their way throughI'd argue that

they have some reasonable understanding, and that they've developed have some of the

analytical and representational tools that would serve them well later on. If that's the

case, how and where should they pick up such skills? How do we provide the instructional

contexts, and support structures (for teachers as well as students) to enable them to

develop such understandings?
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Thoughts Preceding the Algebra Colloquium

Zalman Usiskin
University of Chicago

Betty Phillips began her paper with a description of the many hats she wears when

thinking of algebra. It may help people understand what is said here if I indicate not my

hats but experiences. First, I went to the University of Illinois as an undergraduate. There I

learned the UICSM approach to algebra, which was rather different than the approach I had

been taught in school, which was careful but skill-driven. I learned that being able to do

mathematics was not the same as understanding it; in UICSM, understanding meant to be

able to give reasons for what one was doing and to use precise language. Second, I taught

algebra in high schools in the sixties out of what was for two decades the canonical school

algebra: the Dolciani series. They were very well-written texts that embodied much of new

math. Third, when Art Coxford and I worked in the late sixties to develop a school

geometry course utilizing transformations, we saw immediate applications to school

algebra. As a direct result, in the early 1970s I wrote a second-year algebra text

(Advanced Algebra with Transformations and Applications) that utilized transformations,

matrices, and groups throughout. Fourth, it was clear that this group-theoretic approach

was not the approach to take to first-year algebra. Following the beliefs of my colleague

Max Bell, in the midseventies with the help of NSF funding, I developed a first-year algebra

course (Algebra Through Applications with Probability and Statistics) in which applications

were used to develop the algebra. Understanding now took on a different meaning,

namely, the ability to apply mathematics to situations in the real world. Fifth, from 1979 to

1932, Max and I worked on materials for teachers on applying arithmetic (Applying

Arithmetic: A Handbook for Teachers), because we realized that a major reason for the

difficulty students had in applying algebra was that they could not apply arithmetic. There

is a chapter in that book on uses of variables because we realized that one cannot

adequately discuss arithmetic without variables. Sixth, I was just about to embark on

materials for students for the year before algebra land geometry) when we learned of the

interest of the Amoco Foundation in funding a large-scale project to improve school
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mathematics in all the grades K-12. So began UCSMP, which has afforded me (and many

others) the opportunity to put together ideas learned from our earlier ventures. Algebra is

a force in all six of the UCSMP secondary (grades 7-12) texts, and the main subject matter

of two of them: Algebra and Advanced Algebra. For students who are at or above grade

level in mathematics, these are designed to be taken in 8th and 10th grade. (Judging from

teachers who attend our conferences, about half of UCSMP Algebra students in non-state

adoption states are 8th graders The percentage is much lower in state adoption states.)

We recommend that better-prepared students take these courses earlier; more poorly

prepared students take them later. And seventh, we are now working on the second

editions of UCSMP texts, which we hope are influenced by the latest in curriculum thought

and by the experiences of teachers and students in the thousands and thousands of

schools using our first editions.

Levels of Curriculum

Certain conceptions may be useful to us. One conception is the levels of curriculum

from SIMS (Second International Mathematics Study):

Ideal curriculumas represented in documents like the Standards;

Implemented curriculumwhat is taught; and

Achieved curriculumwhat is learned.

We may wish to add to this:

Available curriculumwhat is found in textbooks and other materials; and

Tested curriculumwhat is found on various evaluation instruments.

It is dangerous to use the worst of the implemented and achieved curricula in our country

to justify changing the ideal curriculum unless we compare it with what we think might be

the worst of the implemented and achieved curricula under a new ideal curriculum.

Conceptions of Algebra

What is (are) our conception(s) of algebra? Betty Phillips has given 10 conceptions

in her paper, but then suggests a vision that I believe is far too encompassing. "Algebra"

in it could be replaced by "analysis" or even by "geometry!" I prefer to say that there are

many ways to describe patterns. I have difficulty calling all of these algebra: to me tables

are arithmetic; graphs are geometric; formulas are algebraic. I am reminded that many

students think of an ellipse only as an algebraic figure because they are introduced to it in
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a formal way by an equation, and they think symmetry requires that one have a coordinate

system. Thus, sometimes algebra demeans the visual world as the origin of many

concepts. Algebra is fundamental but it is not all of mathematics.

I think four of Betty's conceptions are major:

Algebra as generalized arithmetic;

Algebra as a means to solve problems;

Algebra as a study of relationships; and

Algebra as the study of mathematical structures.

Underlying all these is algebra as a symbolic language that describes both real and

hypothetical patterns.

Algebra as a Language

My experiences have led me to a large number of beliefs about school algebra, too

many to list here. The most relevant, however, may come from the notion that algebra is a

written language dealing with the use of letters or other symbols (not words) to stand for

elements of sets. The following then follow because it is a language:

Algebra is best learned in context.

Almost any human being can learn it.

Familiarity is more easily acquired when one is younger than when one is

older.

Should We Worry Whether Algebra is a Course or Not?

Some may wish us to discuss the question whether algebra should be a course or

not. This to me is a red herring. Algebra is today found in all mathematics books above

grade 6 and in many elementary books as well, whether or not they have "algebra" in their

title. In many states it is state law that there be an algebra course (or two), and one will

change the curriculum faster by keeping that course and changing i. than by attempting to

remove the course. The question should be: What algebra do we wish students to learn?

Let the dozen NSF-sponsored projects, other curriculum developers, and state and local

educators work on the packaging.

Where Might We Begin?

It used to be that we thought of algebra as everything associated with variables

that stand for numbers or operations. In other settings, I have written about conceptions of
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algebra and related uses of variables. But I think to get into that level of detail at this

conference might lead us off track. Variables are in geometry and every other branch of

mathematics. I think it would be better for us to begin with the traditional conception(s) of

algebra, to begin where most of our readers are at. And then, if we wish to change the

conception(s), we will at least have a point of departure. In this regard, I would say that

Betty has used the word mythical in the definitioh of algebra to which it least applies! In

my experience, the body of knowledge that has been traditionally called "algebra" is about

as well-defined as any body of knowledge we have in mathematics.

What Issues Might We Address?

Betty's enunciation of issues is most helpful. I would hope we also could address

some of the myths I mentioned in my earlier notes: (1) that algebra is only useful for future

scientists or engineers, so it needs not be taught to all; (2) that algebra is inherently

difficult, that it cannot be learned before 9th grade except by the gifted; and (3) that "true"

algebra is the manipulation of symbols. There is a fundamental down-to-earth question that

we should at least raise, if not try to come to consensus. What algebra should everyone

have an opportunity to learn? If not everyone, then who should have an opportunity to

learn: factoring of quadratic trinomials; manipulation of rational algebraic expressions;

complex numbers: matrices; vectors; manipulations with radical expressions. The starting

point for this could be the lists in the NCTM Standards.

Where Might We End?

Judging from the conceptual framework provided by Carole Lacampagne and

enunciated in the list of invited participants, our charge in Working Group 'I overlaps with

that of Working Group 3. We might quickly try to come to some boundary conditions that

would keep the groups from discussing the same things.

We also necessarily overlap with Working Group 4, and not just in the ways that

Carole has mentioned. The boundaries between algebra and calculus are fuzzy to anyone

who has graphing technology. Some of the new curriculum projects ask students in their

first-year course in algebra to answer questions that we did not consider until calculus.

Furthermore, the needs ef the calculus curriculum are a powerful force in determining what

is taught in school algebra. Without a change in the thinking of college-level
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mathematicians toward school algebra, it is unlikely that any changes in school algebra will

be sustained.

What Experiences Can We Bring to Bear?

I assume that Betty's last question was rhetoricalwhat happens in other countries

is very useful information. The Soviets introduce variables in the early elementary grades

with a great amount of success and, like the countries of the Far East, give a concentrated

algebra experience to all students beginning in grade 7. Let us realize that some countries

are ahead of us when it comes to teaching more mathematics to more students, and

capitalize on their experience.

One thing we might want to recognize is that, at least in Japan and Taiwan and

China, students are sorted by exams into schools at grade 7, and the algebra that is taught

in some schools in grades 7-12 is more advanced than the algebra taught in other schools

at the same grades, even though all schools follow the same national curriculum. That

happens also in the United States, though with us it is unofficial. What goes for "honors"

algebra in some U.S. schools would be a typical course in others. When we speak of

"Algebra for All," would we really be content with the.same algebra for all?

Thoughts Following the Algebra Colloquium

There were really three levels and two types of algebra being discussed at this

conference. The two types of algebra were wonderfully explicated by Lynn Steen in his

final remarks. One type leads from functional thinking to functions to calculus to analysis.

The other type leads from patterns to manipulation (but this is really in bothLynn should

have replaced it with "properties") and then (through an intermediate step felt by Lynn to

be missing) to linear and abstract algebra. This intermediate step is the introduction of

transformations and matrices and vectors (for linear algebra) and properties and examples

of structures (for algebra). I am pleased that we do both of these in the UCSMP

curriculum.

Jim Kaput's paper for Working Group 1, and Alba Thompson's remarks at the

colloquium stressed only the first type, that involved with functions. In fact, Alba distorted

the situation by showing a transparency purportedly summarizing the NCTM Standards

statements regarding algebra, nut in fact deleting all but the statements concerning
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functions. On the other hand, Victor Katz's presentation emphasized only the second type

of algebra.

I myself believe that it is the second type of algebra with which we should have

been primarily concerned, and that the other is properly called analysis, but it is obvious

that there is overlap both in school mathematics and in mathematics itself. The three levels

were:

1. The introduction of algebraic ideas and algebra itself, roughly covering the

ideas that are now encompassed in first-year algebra but with many

thoughts for major change both in content and in delivery;

2. The honing of skills (can I say the word?it was noticeably absent from the

discussion) and the elaboration of mathematical relationships and

applications that is now covered in the later years of high school or in

remedial courses at the college level;

3. The linear algebra and abstract algebra that are taught as post-calculus

courses (usually) at the college level.

Of these three levels, I heard very little discussion concerning level (2), though this may

have occurred in Working Groups 3 and 4.

The significance of this gap is that, though we spoke of "algebra for all," we spoke

almost entirely of access to the ideas, not of success within them. There was much talk

about how, if we just changed our approaches, students would be better served, but there

was little talk about the next step, and that is, somehow identifying what students who

leave high school would be able to do with this "new algebra" that they could not do

before, and the implications that would have for colleges. In particular, there was almost

no discussion about what these students might be able to do outside of the realm of

functions (i.e., in the second type of algebra I refarred to above). For many, it will be

hollow success if we have more students who pass through some sort of algebra filter if,

once they have passed through, there is no tangible increase in their understanding or

ability to do anything.
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Report of Working Group 2

Alphonse Buccino
University of Georgia

Vision of the Achievable

What is the meaning of "Algebra for All" and why should there be a colloquium

focused on algebra? For America and many other nations, the characteristic feature of

formal education in this century is the provision of increased access: over the last hundred

years, increasingly larger proportions of our population have spent more and more time in

schools and colleges. This is reflected in the expansion to near universal access to high

school education in the early part of the century, followed by a great increase in access to

higher education in mid-century. The phenomenon of increased access appears to have

leveled off over the last 25 years or so and, as an issue, has been replaced by concern

over outcomes and resultsspecifically, how to help larger proportions of our citizens

attain more from access to education, how to bring them to higher levels of achievement in

knowledge and skill.

This shift in focus from access to outcomes is part of the contextual scene that led

to the Algebra Initiative. The conceptual framework and the discussion at the conference

implicitly and explicitly underscore the focus on algebra as a barrier, a stumbling block, to

higher achievement. Thus, a major implicit focus of the colloquium is the idea of elevating

for all education professionals their vision of the achievable' and strengthening their

professional com.nitment to Algebra for All.

Two major barriers are associated with these ideals: (a) the intrinsic difficulty of

teaching and learning mathematics; and (b) diversity and multicultural issues, barriers to

particular groups marked by race, gender, class, first language, or other societal categories.

Both these barriers are addressed by the NCTM Standards. However, the standards and

subsequent reports must be supplemented by guidance for identifying the nature of these

barriers and eliminating them from classroom settings.

The use at this phrase here is suggested by observations of Philip W. Jackson in Chapter II of Fundamental Research and
the Process of Educator:, a report published by the National Academy of Sciences in 1977.
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Redefining Algebra

It is in the foregoing context that across the state and nation the call for credibility

in school mathematics is focused on a thing called algebraemphasized by the call of

algebra for every student. First, this is a response to the recognized need for increased

mathematical reasoning and application by all members of society. No longer can the work

force function with only a few individuals with mathematical sophistication beyond

arithmetic! Second, it is the recognition of the inappropriate use of mathematics,

specifically algebra and calculus, as gate keepers in our society. Tracking in mathematics is

a major force in effectively excluding individuals from many academic and vocational

pursuits.

We must involve all of our constituenciesstudents, parents, leaders from

business, and educators at all levelsin addressing the challenge of algebra for all

students. The task will be a difficult, time-consuming onefor every one involvedbut

we cannot ignore the need. The task will involve major changes of beliefs about what

algebra is, how one does algebra, and who can learn algebra. Technology has opened up

mathematics to individuals in just about every line of work. We must challenge the widely

held American belief that mathematical ability is hereditary.

School algebra evolved as performance of symbolic algebraic procedures, such as:

solve, simplify, factortypically as isolated, symbolic manipulations. We must do

something different! The vision of algebra for all students must be clarified and

communicated openly within the education community and beyond. First, what is the

algebra deemed necessary for all students? Second, how do we change expectations about

what algebraic performance is: for teachers of algebra? for students? for parents? for post-

secondary gate keepers? for employers? for district administrators? Third, how do

teachers, schools, districts, and states monitor student performance in using this algebra?

In the fast changing world of mathematics, science and technology, there is no single

answer to these questions. Lynn Steen, director of the Mathematical Sciences Education

Board and former president of the Mathematical Association of America, states: For most

students the current school approach to algebra is an unmitigated disaster. One out of

every four students never takes algebra.... And half the students who do...leave the course

with a lifelong distaste for mathematics."
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Algebra as a Human Endeavor

Numerous groups and projects are making recommendations on algebra for all

students. Most call for the immersion of algebra skills in an applied and conceptual

curriculum. They suggest the building of an algebra curriculum extended over many years,

from the primary grades on, where students search for and describe mathematical

patterns. In such a program, algebraic reasoning, descriptions, and symbols are used to

describe the world around us.

Many of the projects recommended the concept of function as the unifying theme.

Special attention is given to building tables of data and their graphs from observed patterns

and experimental data. Experimental data collection from the sciences, social studies, and

real world call for comparison between two traits or characteristics in contextual problems.

How does one trait vary as we change the other? This is a powerful meaning of the term,

variable, which is , -rowly used in traditional algebra symbol manipulation. This is the

algebra that is used by most adults in everyday life. The reading and interpreting of graphs

or tables of data that may show relations between factors. Major decisions are made on

the interpretations of these relations!

Even before symbol manipulations skills are learned, students should see and

discuss meaningful linear, quadratic, and exponential data. Such data exists in middle

science and social studies material. Well-chosen examples introduce students to a major

reason for using algebramodeling real world situations. Attention to this view reinforces

mathematical connections within mathematics to measurement, statistics, and geometry.

Additionally, there are connections among algebraic representationsgraphic, numeric

(often tables), and symbolic.

The Toils of Algebra

We must publicize the set of tools that are meaningful in the learning and doing of

algebra. Technology (graphing calculators and spreadsheets) and manipulatives (e.g.,

algebra tiles, integer chips, geoboards) are showing positive value in students who

approach algebra with a weak or uneven background and low self-esteem in mathematics.

In the past, the. use of technology has been delPyed until students cJuld do symbolic

manipulations by handjust as was once required with long division and messy fraction

calculations. Now there are several algebra curricula which require, or strongly encourage,

97



the use of graphing calculators on a regular basis. At today's prices, a classroom set of 30

calculators is approximately $2,000, the price of one computer workstation.

Algebra for All in a Variety of Ways

As districts move to consensus on algebra for all students, the implementation plans

vary. In some cases, all students will be in algebra by the ninth grade. In other districts, a

challenging middle grades mathematics program builds algebraic reasoning and multiple

algebraic representations of relationships across the curriculum. Many schools use state

guidelines which include algebra in an integrated program for traditionalh noncollege bound

students.

Changes in Postsecondary Mathematics

While often slow to change, college requirements and examinations are beginning to

change. New courses are being offered as alternatives to meeting competencies required

for graduation. These courses are quite varied, but many involve such topics as

management sciences (networks, scheduling, and linear programming), statistics (sampling,

surveys, statistical inference using confidence intervals), social decision making (weighted

voting systems, fair division and apportionment, game theory) and exponential growth and

applications. Students who have been slow and poor in algebraic manipulation have been

seen to develop algebraic reasoning and representation for significant mathematical

settings they would have never seen in more traditional courses.

A change in view on what algebra is will require thorough, on-going discussions

about expectations with staff, school administrators, parents, ano community members.

First reactions often will be similar to those encountered when the inclusion of calculators

in the elementary grades was first introduced. We must be ready to carry on the dialog in-

depth and over time.

Educators at all levels of responsibility must be ready to respond to parents, the

public, and colleagues on expanding mathematical knowledge arithmetic for all students.

This is a challenge consistent with the NCTM Standards and the national concern for

improved mathematical power.
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Teacher Preparation Programs

We turn now from the foregoing view of redefining algebra to the following

observations and recommendations regarding the education of teachers, including K-8

teachers, to provide this new algebra experience for all K-12 grades. The critical elements

of teacher preparation programs are: admissions standards, teaching content, pedagogy,

and field experiences. Thus, teacher preparation programs must involve the active

collaboration of mathematics departments and departments of mathematics education. In

light of our observations regarding a vision of the achievable, another element we refer to

as affective development also needs to be considered. Because admission standards to

teacher preparation programs play a significant role in determining who become teachers,

program improvement and reform should use more stringent admission standards from both

the academic and professional point of view, especially for programs for the preparation of

middle school and elementary school teachers. We turn now to addressing the other

elements, adding discussions of faculty enhancement to facilitate implementation of our

recommendations. In another section, we link the field experiences element to a discussion

of the World of Practice where teachers practicing in schools are identified as co-equal

with college and university faculty in addressing reform of algebra. An addendum by one

of the Working Group members is also included which provides elaboration of several of

the ideas discussed.

Affective Development

The reform effort in algebra teaching should include attention to affective

development. There should be the infusion of a multicultural background into the algebra

reform effort that includes:

Studies both to synthesize existing knowledge and to create new knowledge

concerning the ways in which the teaching of mathematics encodes biases

which are often not recognized by teachers;

Developing mathematics examples which can be included in multicultural

education courses required of prospective teachers;

Providing specific information and guidance to teachers in mathematics

methods courses and professional development programs; and
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Developing a syllabus for a course on the multicultural history of

mathematics which should be required of all mathematics education

students.

Curriculum Content

Model teacher preparation curricula need to be developed in line with the ideas of a

strands approach for the teaching of algebra for all and in light of new technologies. These

curricula models should include pedagogy, content, epistemology, and experiences

appropriate for the education level to be taught. This will require reconceptualization of the

college curriculum for the preparation of K-5, 5-8, and 9-12 teachers.

EleMentary and middle school teacher preparation programs should pay particular

attention to the mathematics of quantity and change where opportunities to learn algebra

occur. An emphasis on representation, generality, and structure should permeate that

curriculum. The application of technology and the development of skills in the use of

symbolic manipulators and graphing utilities should be acquired by their use in courses

throughout the program and should not be tagged on to be acquired in a separate course.

Pedagogy

First and foremost, those who offer teacher preparation programs should

themselves model good instruction. Moreover, the quality of instruction in these programs

must be examined and modified as necessary to:

Incorporate a cognitive orientation (take account of what students learn and

what they make of our teaching); use on-line assessment; sensitivity to

students' concept images;

Maintain open lines of communication with students;

Emphasize conceptual development of math ideas; reduce emphasis on

technique building; build on algebraic intuition; and

Organize curriculum of courses in terms of cognitive objectives as opposed

to content objectives.

The work in pedagogy should be content-specific. There should be differentiation by

education level (e.g., K-8 versus early childhood and middle school). Moreover, there

should be a pairing of content and pedagogy work such as shadow seminars (seminars on

teaching issues associated with specific content course3).
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Field Experience

The field experience component of a teacher preparation program is significant.

Accordingly, the selection of supervising teachers is critical. Overall, the quality of

practicum or field experiences for all prospective teachers is a problem in need of attention.

This is discussed further in the section below headed "The World of Practice."

Faculty Enhancement

Development of new teacher preparation programs requires faculty enhancement so

that faculty model exemplary teaching methodology associated with algebra (mathematics)

reform. Moreover, doctoral programs in mathematics and mathematics education should

incorporate pedagogy and epistemology of mathematics. There is a need to expand faculty

enhancement programs which give mathematics and mathematics education faculty

(preferably jointly) opportunities to:

Develop and experiment with a broad repertoire of teaching strategies to

enhance the conceptual understanding of their students;

Become more knowledgeable about how students learn and how to assess

the learning of their students;

Explore curricular issues related to learning of algebra and preparing K-12

teachers to implement new curricula; and

Develop and/or become familiar with exemplary curriculum materials which

enhance understanding of algebra.

The World of Practice

Effective teacher preparation programs must have robust and active relations with

the world of practice. Relationships with the world of practice in the schools should be

strengthened through the implementation of the concept of co-reform: reform of teacher

preparation programs jointly with the reform of practice in the schools. This will require the

establishment of partnerships between teacher preparation programs and the schools.

Colleges and universities should review and strengthen their invitational/outreach efforts, in

the'light of co-reform, to establish and maintain lines of communication among

mathematicians, practicing teachers, and mathematics educators and work to create a

climate that is more teacher friendly. For example, colleges and universities can be more

accommodating in their scheduling of courses to meet the needs of practicing teachers.
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These invitational/outreach efforts should involve a more cognitive stance in teaching while

developing greater sensitivity to issues of cultural diversity with a multicultural

perspective.

Moreover, an algebra reform movement requires change in current practices of

teaching algebra in schools. The school or school district is the locus of such change and

the success of such a movement is dependent on changing the practices of current

teachers, since obviously the time line of change must be shorter than the attrition of

practitioners. In fact, if practices of current teachers are not changed, even newly

graduated teachers who have been prepared for implementing new methods will find it

difficult to do so in an environment that does not support new ideas. Few first- and

second-year teachers are leaders among the faculty of their school; rather, they look to the

experienced teachers for guidance and, indeed, survival. If that experienced faculty does

not participate in the reform movement, then most new teachers will gradually adopt the

ideas of their senior colleagues who convince them older methods are "what works."

Crucial Concepts for Teachers of Pre-college Algebra

An understanding, concept definition, and concept image of the dimension of vector

spaces, for example, is probably crucial for teachers of third and fourth-year high school

mathematics courses. It is useful for any teacher of high school-level algebra. It is,

however, beyond any feasible goal as a necessity for even ideal) for every elementary and

middle school teacher who is responsible for the mathematics education of students. The

vast majority of teachers who influence the algebra-readiness and hence the algebra

success of pre-college students are not teaching higher level high school mathematics

courses; and for the near future, they are not the products of reformed preenrves university

teacher education departments. The majority are elementary and middle-school teachers

who completed their degree programs in traditional programs. While they do not need

in -depth understanding of linear algebra, they do need such things as:

A working knowledge of using technology in instruction;

Conceptualization of relationships among quantities;

A commitment to development of algebraic thinking for all students;

An understanding of the role of algebra as a gateway to academic

development and full participation in citizenship and

Access to real-world examples of the uses of algebra.
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What must these teachers do? What must they learn? How can they learn to

prepare young people for success in algebra? The answer lies in both curriculum and

professional growthconcepts that are interdependent. While curriculum is not the topic of

this paper, the approach to professional growth will make the assumption that a new

curriculum for pre-college algebra will treat it not as a ninth-grade course (taken also by

advanced eighth graders and precocious seventh graders), but as the study and utilization

of quantitative relationships, appropriate for all, from pre-school through a lifetime. This is

consistent with the National Council of Teachers of Mathematics (NCTM) curriculum

standards.

Many currently practicing elementary and middle school teachers and many

secondary mathematics teachers are not prepared to implement this approach to algebra,

nor are they receptive to top-down mandated change. Therefore, the key to change is that

practicing teachers must take responsibility for their own professional growth. They will

also need assistance from many sourcesprofessional organizations, university teacher

education departments, university mathematics departments, their own school

administrators, their state departments of education, and their peers. Indeed they do need

such assistance. The critical attribute is that the practicing teachers determine and seek

fulfillment of their own needs. These external sources must facilitate, rather than control.

Next Steps

Model programs should be identified and developed in which practicing teachers

take the initiative in identifying and satisfying their needs for professional development in

teaching and encouraging algebraic thinking K-10. These should be characterized by:

A team approach to the identification of needs;

Support of the school-district administrators;

A variety of possible sources of the professional development, including

universities, professional organizations, school-district instructional

administrative staff, and other practicing teachers; and

Mutual respect and parity among all the playersthe practicing teachers,

providers of instruction, school administrators.

In closing, we observe that there is a crisis in content in the elementary school.

Current ideas about knowledge and teaching at the early grade levels have acquired

increasing sophistication in virtually every field, but especially for mathematics and
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science. This crisis in content makes it increasingly difficult for any one person to teach all

subjects, as is still the expectation in most elementary schools. What is needed are new

models of school structure and organization to experiment with new approaches to content

specialization' or differential roles for teachers in the lower grades. Serious efforts along

these lines will require changes in such policy areas as the regulation of education and

teaching: certification, licensure, professional standards, and accreditation.

Addendum on Teacher Education

by Guershon Harel, Purdue University (in print): On teacher education programs in

mathematics, International Journal for Mathematics Education in Science and Technology.

Current teacher education programs suffer from a lack of attention to the three

crucial components of teachers' knowledge: mathematics content, epistemology,

and pedagogy. As a result, they cannot achieve the desired quality in teachers as

was envisioned by the current mathematics education leadership. Teachers'

mathematics knowledge is far from being satisfactory even in terms of the

standards for high-school mathematics. The work on epistemology and pedagogy is

detached from a personal experiential basis of teaching, and thus it is in conflict

with the well established principle that knowledge construction (and this includes

mathematics knowledge as well as kni-Aeledge of mathematics epistemology and

pedagogy) is a product of personal, experiential problem solving activity. The effort

of teacher education programs must center on these three components of teachers'

knowledge base. In particular, teachers' knowledge of mathematics should be

promoted and evaluated in terms of mathematics values, not specific skills,

concepts, and symbol manipulations.

Mathematics content, which refers to the breadth and, more importantly, the depth

of the mathematics knowledge possessed by the teachers, is a crucial component because

it "affects both what [the teachers] teach and how they teach it" INCTM 1991, p. 132).

Moreover, a solid mathematics background is indispensable "to understand the

complexities of the mathematics embodied in the IS&EI Standards, complexities that may

have an effect on their implementations" (RAC 1988, p. 294).

Knowledge of epistemology includes the teachers' understanding of how students

learn mathematics. Teachers must understand fundamental psychological principles of

learning: that students construct their own meaning as a result of a disequilibration while
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they encounter new knowledge, that the source of any knowledge construction is an

experiential problem solving activity (e.g., Balacheff 1990; Harel 1985; Piaget 1983; and

Thompson 1985) and that mathematics is a social construct students establish through a

negotiation process (Brousseau 1986).

Knowledge of pedagogy refers to teachers' ability to implement these psychological

principles; that is, their skills to teach in accordance with the nature of mathematics

learning. Mathematics teachers should be able to make their classes a place of

"collaborative practice involving social construction of knowledge and socially distributed

problem solving, ... [a place] where students, working collaboratively and under the

tutelage of their mathematics teacher, engage in substantive mathematical activity" (RAC

1988, p. 342).

While these general characterizations are, I believe, in line with the theoretical

perspective taken by the Standards, they are in sharp contrast to the current state of

learning and teaching (see, for example, NAEP 1986). This contrast points to a major effort

that is needed to help teacher educators "interpret the Standards and take steps toward

implementation" (RAC 1988, p. 340). In particular, it points to a need for a collaborative

effort in developing adequate teacher education programs which will prepare our next

generation of mathematics teachers in the spirit of the Standards. The development of

such programs is not an easy task end involves financial, organizational, political, and

curricular problems. I will focus on three of these problems: learning how to teach via

learning how to learn, learning how to teach via teaching how to learn, and teaching only if

knowing what to teach.

Learning How to Teach via Learning How to Learn

Currently, teacher education programs include content courses taught by

mathematicians and "methods" courses (usually only one) taught by mathematics

educators. The responsibility in the education of teachers for the learning and teaching of

mathematics is placed in the methods courses only. The problem with this pattern of

teacher preparation is that teachers' beliefs of what mathematics is and, in particular, how

it should be taught are tacitly formed by the way they are taught mathematics in their

precollege and college mathematics education. Unfortunately, as the recent report of a joint

task force of the Mathematical Association of America and the Association of American

Colleges, MAA-AAC (1990), put it, "most college students don't know how to learn
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mathcmatics, and most college faculty don't know how students do learn mathematics. It

is a tribute to the efforts of individual students and teachers that any learning takes place

at all" (p. 8). "The way mathematics is taught at most collegesby lectureshas changed

little over the past 300 years, despite mounting evidence that the lectuie-recitation method

works well only for a relatively small proportion of students" (NRC 1991, p. 17). Thus,

mathematics teacher education as currently practiced is inappropriate to carry out the

mission of teacher preparation. It is not possible for prospective teachers to change their

beliefs and conceptions about mathematics they have formed during a long period of time

in one methods course. The goal of revitalizing the mathematics instruction in schools will

be achieved only if the ways preservice teachers are taught mathematics were compatible

with the principles of learning underlying the recommendations of the Standards.

Learning How to Teach via Teaching How to Learn

The second problem also arises from the way teacher education programs are

currently conducted. In these programs, prospective teachers have very little contact with

students, and the contact they do havewhat's called student-teaching experienceis not

integrated in, and it is remote from, their study of the teacning and learning of

mathematics. Moreover, these methods courses are separated from prospective teachers'

own experience of learning mathematics. In other words, prospective teachers learn about

mathematics epistemology and mathematics instruction, in isolation from an experiential

basis of teachingthus in only a hypothetical context of students' learningand without

reflection on their own learning. Personal experience and self-reflection are, I believe,

indispensable for understanding and appreciating the problems that are inherent in learning

and teaching situations. The current teacher education programs are, therefore, in direct

conflict with the epistemological principle that knowledge construction is a product of

personal, experiential problem solving activity, because this principle applies to the

problems that mathematics teaching and learning present as well as to learning

mathematics. Without resolving the conflict, the methods course as they are offered today

contain elements of preaching, not just teaching.

Teaching Only if Knowing What to Teach

The third probleni concerns teachers' knowledge of mathematics. The Professional

Standards INCTM 1991.), and a recent document of recommendations for the mathematical

preparation of teachers of mathematics by the Mathematical Association of America, MAA
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(1991), address this component of teachers: knowledge. To mathematics educators who

do believe that mathematics teachers need to have a strong mathematics background, the

picture drawn from the current research on teachers' knowledge of mathematics is very

depressing. Extensive surveys of the state of mathematics teaching and learning is readily

available, and there seems to be little point in repeating it hete (see, for example, Romberg

and Carpenter 1986; Suydam and Osborne 1977). Rather, I will discuss some findings

from my own research with teachers, which indicates that teachers' mathematics

knowledge is below even the level expressed in the recommendations of the S&E

Standards (NCTM 1999), for high-schoo! students. For example, the recommendations

concerning the idea of mathematical proof in high school state that:

In grades 9-12, the mathematics curriculum should include principles of inductive

and deductive reasoning so that ALL students can: make and test conjectures,

formulate counter examples; follow logical arguments; judge the validity of

arguments; construct simple valid arguments, and so that, in addition, college-

intending students can: construct formal proofs for mathematical assertions,

including indirect proofs and proofs by mathematical induction (p. 143).

The results presented below show that what prospective teachers acquire from their

mathematics classes in high school and college is no more than a distorted notion of

mathematical proof. Some of the research questions posed were (see the two publications

of Martin and Harel 1989): Do prospective teachers understand that inductive arguments

are not proofs for mathematical statements? Are they able to judge the validity of

mathematical arguments? To what extent are they influenced by the ritualistic aspect of

proof? It was found that:

Many students accepted inductive arguments as proof of mathematical

statements...and that acceptance of inductive and deductive arguments as

mathematical proof was not found to be mutually exclusive..Many students who

correctly accepted a general-proof verification did not reject a false-proof

verification; they were influenced by the appearance of the argumentthe ritualistic

aspects of the proof rather than the correctness of the argument..Such students

appear to rely on a syntactic-level... in which a verification of a statement is

evaluated according to ritualistic, surface features. Alternatively, relatively few

students have a conceptual-level deductive scheme in which a judgment is made
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according to causality and purpose of the argument (Martin and Hare! 1989, pp. 48-

49).

These results are consistent with the conclusion made in Even (1985) that "we can

no longer assume that our preservice secondary mathematics teachers have an adequate

grasp of the mathematics that they will be expected to teach" (cited in Norman 1992).

The state of the elementary mathematics teacher is no better. For example, work

with preservice elementary school teachers (Graeber, Terosh, and Glover 1989; Mangan

1986) and 4-6 grade teachers (Harel, Behr, Post, and Lesh, in press) in the domain of

multiplication and division shows that these teachers possess the very same

misconceptions that have been identified with children. Like children's knowledge,

preservice and inservice teachers' knowledge includes beliefs that are incongruent with the

multiplicative operation of rational numbers. These beliefs thus block their attempts to

solve many multiplicative problems correctly. Examples of such misconceptions include

"multiplication makes bigger" and "division makes smaller" (Bell, Fishbein, and Greer 1984;

Bell, Swan, and Taylor 1981; Fishbern, Den, Nel lo, and Marino 1985; Vergnaud 19831.
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Educating Teachers to Provide Appropriate
Algebra Experiences:

Practicing Elementary and Secondary Teachers
Part of the Problem or Part of the Solution?

Clare Gifford-Banwart
Eisenhower State Mathematics & Science Program

U.S. Department of Education

Change in Methodology Needed

An algebra reform movement requires change in current practices of teaching

algebra in precollege schooling. Among the needs are the following:

Integration of algebraic thinking skills throughout the K -1 2 mathematics

curriculum;

Transition from students as objects of instruction to participants in learning;

transition of teachers from dispensers of knowledge to facilitators of

learning;

Transition from algebra for the elite to algebra for all;

Transition from focus on algorithms to focus on conceptualization and

problem solving; and

Utilization of technology.

School as the Locus of Change

The school or school district is the locus of such change and the success of such a

movement is dependent on changing the practices of current teachers, since obviously the

timeline of change must be shorter than the attrition of practitioners. In fact, if practices of

current teachers are not changed, even newly graduated teachers who have been prepared

for implementing new methods will find it difficult to do so in an environment that does not

support new ideas. Few first- and second-year teachers are leaders among the faculty of

their school; rather, they look to the experienced teachers for guidance and, indeed,

surviril. If that experienced faculty does not participate in the reform movement, then

most new teachers will gradually adopt the ideas of their senior colleagues who convince

them older methods are "what works."
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Crucial Concepts for Teachers of Pre-college Algebra

It is not surprising that university faculty who teach mathematics courses such as

abstract algebra and linear algebra see the rudiments of these courses as essential for any

algebra teacher. Indeed, an understanding, concept definition, and concept image of the

dimension of vector spaces (for example) is probably crucial for teachers of third- and

fourth-year high school mathematics courses. It is useful for any teacher of high-school

level algebra. It is, however, beyond any feasible goal as a necessity (or even ideal) for

every elementary and middle school teacher who is responsible for the mathematics

education of students.

The vast majority of teachers who influence the algebra readiness and hence the

algebra success of pre-college students are not teaching higher level high school

mathematics courses; and for the near future, they are not the products of reformed pre-

service university teacher education departments. The majority are elementary and middle-

school teachers who completed their degree programs in traditional programs and may

likely not have a major in mathematics. While they do not need in-depth understanding of

linear algebra, they do need such things as:

Numeracycomfort and confidence in handling numerical data;

A belief in the value of mathematics;

Conceptualization of relationships among quantities;

A working knowledge of using technology in instruction;

A commitment to the development of algebraic thinking for all students;

An understanding of the role of algebra as a gateway to academic

development and full participation in citizenship; and

Access to real-world examples of the uses of algebra.

What must these teachers do? How can they prepare young people for success in

al,gmbra? How can they change the filter to a pump?

The answer lies in both curriculum and professional growthconcepts that are

interdependent. While curriculum is not a topic of this paper, the approach to professional

growth will make the assumption that a new curriculum for pre-college algebra will treat it

not as a ninth -grade course (taken also by advanced eighth graders and precocious seventh

graders), but as the study and utilization of quantitative relationships, appropriate for all,

from pre-school through a lifetime. This is consistent with the National Council of Teachers
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of Mathematics curriculum standards as set forth in Curriculum and Evaluation Standards

for School Mathematics.

Most currently practicing elementary and middle school teachers and many

secondary mathematics teachers are not prepared to implement this approach to algebra,

nor are they receptive to top-down mandated changes. But they are dedicated, capable,

creative professionals who, given the proper opportunity, can and will learn and make

changes that they believe benefit their students.

Therefore, the key to change is that practicing teachers must take responsibility for

their own professional growth. That does not mean that they do not need assistance from

many sourcesprofessional organizations, university teacher education departments,

university mathematics departments, their own school administrators, their state

departments of education, and their peers. Indeed they do need such assistance. The

critical attribute is that the practicing teachers determine and seek fulfillment of their own

needs. These external sources must facilitate, rather than control.

A major question at this time is how are teachers stimulated to do this? What

motivates a school-based movement of change and improvement? What outside forces

can plant the seed and what kind of seed will grow? How can agencies/organizations

provide awareness without a top-down approach? What barriers do schools and school

districts face? What support is needed? How is funding appropriately provided? Those are

topics for further exploration.

Next Steps

Model programs should be identified and/or developed in which practicing teachers

take the initiative in identifying and satisfying their needs for professional development in

teaching and encouraging algebraic thinking, K-10. These should be characterized by:

A team approach to needs identification

Support of se loci district administrators

A variety of sources of professional development

Ur.iversities

Professional organizations

School district administrators/staff

Other practicing teachers

Independent consultants
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A variety of forms of learning

University pedagogy courses

University mathematics courses

Staff development workshops and institutes

Professional conferences

Technology-based

Job-embedded learning (peer observation, study/discussion groups,

reading, journal writing, self-analysis of teaching action research

projects)

Mutual respect and parity among all the players

Practicing teachers

School administrators

University faculty

Other providers of instruction (math supervisors, private consultants

and others)

When elementary and secondary teachers take the responsibility for their own

continuing professional development and when the system allows them the resources to

carry out that responsibility, then the changes in teaching methodology required for an

algebra reform movement can become a reality.
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Educating Teachers for Algebra

Alphonse Buccino
University of Georgia

The Challenge: Algebra for All

What is the meaning of "Algebra for All," and why should there be a colloquium

focused on algebra? For America and many other nations, the characteristic feature of

formal education in this century is the provision of increased access: over the last hundred

years, increasingly larger proportions of our population have spent more and more time in

schools and colleges. This is reflected in the expansion to near universal access to high

school education in the early part of the century, followed by a great increase in access to

higher education in mid-century. The phenomenon of increased access appears to have

leveled off over the last 25 years or so and, as an issue, has been replaced by concern

over outcomes and resultsspecifically, how to help larger proportions of our citizens

attain more from access to education, how to bring them to higher levels of achievement in

knowledge and skill.

This shift in focus from access to outcomes is part of the contextual scene that led

to the Algebra Initiative. The conceptual framework provided prior to the conference

implicitly and explicitly underscores the focus on algebra as a barrier, a stumbling block, to

higher achievement. It is a relatively new idea that algebra is necessary for everyone for

economic competitiveness and quality of life. While algebra has always been a staple of

the college preparatory curriculum, 4. is only recently that new programs such as "tech

prep," designed for those not bound for the university, have a strong mathematics

component recognizing the need for moru powerful mathematics preparation for the job

market.

Two major barriers are associated with attempts to establish algebra and success in

learning algebra as basic components of the general education of all students: (a) the

intrinsic difficulty of teaching and learning algebra; and lb) diversity and multicultural

issues, barriers to particular groups marked by race, gender, class, first language, or other

societal categories. Because algebra has functioned as a critical filter separating many
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students from further study of mathematics, any reform of the teaching of algebra must

address these barriers.

The Paradox of Teaching

There are several models that have recently been developed regarding the education

of teachers. One published by the Mathematical Association of America (Committee on the

Mathematical Education of Teachers of Mathematics, 1991) is cited in the paper providing

the conceptual framework for this colloquium. All the models are based on or derive a set

of core propositions for what teachers should know or be able to do (National Board for

Professional Teaching Standards, 1989). All include a core proposition like the NBPTS

Proposition 1: Teachers Are Committed to Students and Their Learning.

Despite what appears to be a consensus regarding the ideal of algebra for all

students, there is by no means a universal commitment to the ideal on the part of

mathematicians and mathematics educators at any level, from elementary grades through

college. This is based on doubts about whether the ideal is realistic and feasible. In fact,

the ideal has not been accepted by many algebra teachers in the schools who retain the

conviction that some students just cannot learn algebra because they cannot deal with

abstraction.

Some of this doubt, in turn, appears to arise from skepticism about even the,

possibility of teaching. Westheimer (1987) has asserted that scientists do not really like to

teach the "unwashed." Certainly, he meant his observations to apply to mathematicians,

as well. On the basis of personal experiencej am becoming more and more completely

persuaded that many of my university colleagues, especially in science and mathematics,

do not believe in teaching. Conversations I have had over the years reveal that while they

may believe in such a thing as learning, they do not believe they can do much as teachers

to help people learn science or mathematics.

This phenomenon is reminiscent of the Meno, where Socrates asserts the

impossibility of teaching. This, of course, is based on Socrates' idea on the nature of

knowledge, also expressed in the Meno: knowledge is innate and instilled in the human

soul at birth. The paradox about teaching is that Socrates goes on to demonstrate his

revolutionary new approach to teaching as a way of bringing this innate knowledge forth in

the student (see Gardener 1985). Freud also asserted the impossibility of teaching,

whilelike Socrateshe introduced a radically new contribution to the art of pedagogy
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(Fe 'man 1987). This paradox, of instituting a revolutionary pedagogy while asserting the

impossibility of teaching, is relevant today. What model of teaching do our mathematicians

associate with failure? What model of teaching allows our best students to flourish? What

policies can be adopted to mediate this paradox?

One consequence of the absence of commitment to the possibility of teaching is the

reinforcement of the elitist perspective I mentioned earlier. Thus, the educational process

does not provide instruction, but functions as a sorting machine, separating the talented

from the untalented. The very title of a recent report on the problems of calculus teaching

and learning (Steen 1988) underscores this phenomenon.

At the elementary school level, two related characteristics stand out: the

significance of innate ability relative to effort, and the American tendency for categorizing

students (Stevenson and Stigler 1 992). For Americans, learning mathematics and science

is frequently seen as a process of rapid insight rather than lengthy struggle. Sort of the

light bulb going off in the head of the cartoon character to signify "aha." As a

consequence of this view, American children are prone to give up too soon in problem

solving. They often give up before reaching genuine understanding. In Japan, this belief is

not shared. The Japanese believe that success in problem solving and understanding

indeed involve lengthy struggle. Those who make the effort in this struggle are rewarded

with success.

The other characteristic, the pervasive American tendency to categorize students, is

reflected in the veritable explosion in special education classes and the growth of

categories of learning disability. Individual students are labeled as having good innate

ability for mathematics or science, or not so good innate ability, and they are classified

accordingly. Even when there is not formal tracking, the practice in American schools and

classrooms is to use ability groupings. In Japan, at least in the elementary school, there is

much less categorizing. All, or almost all, children are expected to learn what the

curriculum requires and they exert effort until they do.

If we are seriously to address the improvement of teaching, we must first resolve

our ambivalence about its very possibility. Moreover, we must develop a genuine

commitment to the ideal of algebra for all students. The resolution and commitment

demand that we look not only at teaching and learning but also at curriculumwhat we

propose to teach and what we expect to be learned.
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Responses to the Challenge and Paradox

Mimetic and Transformative Teaching Traditions

This section presents two ideas suggesting responses that might be devised for

responding to the aforementioned challenge of abstraction and paradox of teaching. The

first idea is provided in an analysis by Philip W. Jackson {1986). In a monograph, Jackson

distinguishes between two traditions in teaching and learning one that he calls the

mimetic, which sees education's purpose in terms of the transmission of factual

knowledge; and the other that he calls the transformative, which sees it in terms of

changes in the learner in areas such as character, murals, attitudes, or interests.

In considering the issue of whether teachers can have an enduring effect on their

students, Jackson reports on a survey that produced many reports from individuals who

remembered most vividly those teachers who succeeded in "transforming," profoundly and

enduringly, at least some of the students in their charge.

The mimetic and the transformative are not necessarily mutually exclusive nor exact

opposites. Both may be intertwined in a given teaching situation. Nevertheless, the

dichotomy is significant and highly valuable in thinking about the problem of teaching

algebra. This is so because algebra is seen widely in terms of the transmission of formulas

and factsa mimetic effort. Yet algebra can play a critical role in the transformative

development of students; it helps to shape their self-image and even their world view.

Fortunately, many mathematicians claim to have distinctly transformative aspirations in

their teaching, such as wanting their students to gain an appreciation for the power and

beauty of their subject, quite beyond facts and concepts. This aspiration is clearly an

incentive that policymakers and administrators will want to use in encouraging good

mathematics educationhelping faculty members to do what they claim they want to do,

Clearly, there are lots of references to the notion of mathematical power in the NCTM

Standards. We must give scope and expression to this notion in curriculum and teaching.

Thus, the central challenge to algebra teaching at altlevels, whether addressed to

the education of all students or to specialized education, is to shift the balance from the

mimetic to the transformative. A great irony here is that advances in science and

mathematics themselves have had a transformative impact. In discussing the Copernican

Revolution, Kuhn (1957) describes this impact as follow:::
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Though the Revolution's name is singular, the event was

plural. its core was a transformation of mathematical

astronomy, but it embraced conceptual changes in cosmology,

physics, philosophy, and religion as well.

Clearly, the Wiles proof of Fermat's Last Theorem has this transformative character

as is indicated by Ribet (1993):

Wile's proof of Taniyama's conjecture represents an enormous

milestone for modern mathematics. On the one hand, it

illustrates dramatically the power of the abstract "machinery"

we have amassed for dealing with concrete Diophantine

problems. On the other, it brings us significantly closer to the

goal of tying together automorphic representations of algebraic

varieties.

We must make the teaching of algebra as interesting, important, and dynamic as

the subject itself.

Content Pedagogy

I turn now to the second idea for meeting the challenge and paradox of teaching

algebra. To begin with, I propose that we couple with the perspective of the transformative

teaching tradition, Shulman'S answer to the question of what one needs to know about a

subject in order to teach it. Shulman (1986, 1987) calls this kind of knowledge

pedagogical knowledge of content, which refers to:

...for the most regularly taught topics in one's subject area,

the most useful forms of representation of those ideas, the

most powerful analogies, illustrations, examples, explanations,

and demonstrationsin a word, the ways of representing and

formulating the subject that make it comprehensible to others.

Since there are no single most powerful forms of

representation, the teacher must have at hand a veritable

armamentarium of alternative forms of representation, some of

which derive from research whereas others originate in the

wisdom of practice.
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Pedagogical content knowledge also includes an

understanding of what makes the learning of specific topics

easy or difficult: the conceptions and preconceptions that

students of different ages and backgrounds bring with them to

the learning of those most frequently taught topics and

lessons. If these preconceptions are misconceptions, which

they so often are, teachers need knowledge of the strategies

most likely to be fruitful in reorganizing the understanding of

learners, because those learners are unlikely to appear before

them as blank slates.

There are several precursors, in mathematics generally and algebra particularly, to

Shulman's identification of pedagogical knowledge of content. There are also several

program models that exist, but I will not discuss them here, except to cite two: the

program model for science education at the University of Chicago articulated by Schwab

(see Westbury and Wilkof 1978) and a similar model developed at Harvard by Conant (see

Nash 1950). My favorite example in algebra is Weyl's monograph on symmetry (1952).

Weyl presents many interesting examples including a very provocative one about

the swastika. Weyl notes that the swastika is "...one of the most primeval symbols of

mankind, common possession of a number of apparently independent civilizations." In the

book, Weyl recalls an observation he made in 1937, regarding Hitler's occupation of

Austria. He said then concerning the swastika: "In our days it has become a symbol of a

terror far more terrible than the snake-girdled Medusa's head." In the book he goes on to

observe: "It seems that the origin of the magic power ascribed to these patterns lies in

their startling incomplete symmetryrotations without reflections." (p. 67) Relating

aesthetic and emotional sensibilities to the formal structure of symmetry illustrates an

extraordinary way to integrate the transformative perspective and content pedagogy in the

teaching of algebra.

I suggest that our discussion at the colloquium might spend some time identifying

these precursors and models. Most especially, we must recognize that pedagogical

knowledge of content (or content pedagogy) is a special form of content knowledge and is,

therefore, subject-specific. Once it is identified, it is immediately clear that content

pedagogy is quite important for teachers.
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Unfortunately, despite the preoccupation with subject matter in current concerns

about education, and despite the evident significance of content pedagogy for the teaching

and learning of subject matter, the emphasis in teacher educationat least for early

childhood teachers and perhaps even early adolescence teachersis on the generic and

not the subject-specific. Further, this situation is not based on conviction, but convenience,

as many teacher education programs are so small that subject-specific pedagogy is not

considered an efficient option, regardless of its intrinsic merit. One major policy focus must

be aimed at greater articulation between teaching and content at all levels. For one thing, it

is not clear whether responsibility for pedagogical knowledge of content lies in the arts and

sciences college or the school or college of education. However, on both the arts and

sciences side and the education side, this kind of knowledge is often recognized. Again,

our colloquium discussions might usefully address this issue.

In addition to such general ideas as transformative teaching and nontent pedagogy

for responding to the challenge of implementing the ideal of algebra for all students, there

are other resources that are more immediate a pragmatic. Although space does not permit

a fuller discussion, I make an observation and cite two references here, regarding such

resources. I suggest that the colloquium may wish to focus on them.

The observation is that technology applied to teaching and learning of algebra

presents a powerful new tool to address the questions and issues. These new tools help

make algebra an experimental science. Visualization in mathematics, empowered by

technological tools, permits a new attack on the tyranny of abstraction. Additionally, there

are two timely and significant references that should be central to the work of this

colloquium: Wagner and Kieran (1989) and Wilson (1993).
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Experience, Abstraction, and "Algebra for. All":
Some Thoughts on Situations, Algebra, and

Feminist Research

Suzanne K. Damarin
Ohio State University

Recent research related to mathematics education points our attention toward the

constructedness of knowledge, the importance of representations (both cognitive and

sensory) of mathematical ideas to knowledge construction, the idea that cognitive

obstacles can impede the construction of appropriate knowledge, and the idea that all

learning is situated in the sense that knowledge is constructed in response to the moment-

to-moment contingencies both within the instructional (or life) settings of students and in

relation to the habits, goals, biases, and beliefs they bring to an instructional or work

setting. These theoretical and empirical developments are important in and of themselves

to the development of "Algebra for All" because they provide new grounding and a "fresh

approach" to the development of new curricula. Moreover, because they are consistent

with the more general developments in the sociologies of science and of knowledge,

epistemologies and theories of knowledge, these developments in mathematics education

allow and invite new conceptual relations with 'estrange bed-fellows," that is, with theories

and practices developed in the fields other than physical science and psychology, the

traditional affiliates of mathematics education, and which are as remote as cultural studies,

feminist studies, black studies, and others.

Of particular importance to this paper is the potential for exchange between theories

and research grounded in feminism and the field of mathematics education. Like

mathematics education, feminist theory views knowledge as constructed, acknowledges

the importance of images and representations to the construction of knowledge,

understands the function of cognitive and affective obstacles to the construction of valid

knowledge, and argues that all knowledge is situated. As Donna Haraway states, "feminist

objectivity means quite simply situated knowledge" (Haraway 1991, p. 188, emphasis in

original).
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If we are to take sLiiously both the goals and the responsibilities implicit in the

phrase "Algebra for All," we must attend not only to the nature of algebra but also to the

nature of the "All" to whom the curriculum is (or, will be) addressed. Our history of

success and failure with the curriculum and instruction of "arithmetic for all" as entailed in

the universal requirement of schooling through grade eight cautions against the idea that a

didactic curriculum of essential facts and procedures will reach all students.

At the Algebra Initiative Conference, Marjorie Enneking described one example of a

student whose experience with "3 " 0 = 0" so affected her that she could not engage

with mathematics in subsequent years. Although there is no empirical research base to

identify and verify the frequency of similar occurrences, those of us who regularly collect

mathematical autobiographies or discuss affect toward mathematics in our classes can

testify to the prevalence of such anecdotal evidence of the failure of arithmetic and algebra

instruction to meet the contingencies of student knowledge building, and to the resultant

development, among many students, of obstacles to learning which are both cognitive and

affective. Perhaps because these obstacles occur more frequently among girls and women,

or perhaps because evidence of their occurrence is most often forthcoming in collegiate

courses dominated by women (e.g., methods courses for elementary teachers, courses on

women and science), such obstacles seem to affect the mathematical development of

many women, in particular.

Many of the stories which reveal the initial occurrence of cognitive-affective

obstacles to further learning of mathematics are stories of perceived (and unrelieved)

mismatch between the "facts of mathematics" and the "facts of life." At least in my

hearing, these stories tend to focus on the introduction of particular abstract objects and

procedures: zero (and the empty set), irrational square roots, quotients of fractions,

products of negative numbers, and various phenomena of algebra.' In all cases, the

objects named are remote from direct experience, or at least from experience which has

been articulated in relation to the meanings of mathematics. In the case of zero, for

example, every child who has played Go Fish! (or a simile; game) has enjoyed experiences

with the empty set; but these experiences are typically remote from the salient activities of

arithmetic class. What seems to have been problematic for Enneking's student, and for

many of my own, is the relative salience, within arithmetic classes of the experience of

three-ness (and its naming as 3) when compared with the experience of none-ness (and its
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naming as 0). This is an issue of the situatedness of knowledge; and it points to some very

real questions about the relations between experiences and abstractions.

Abstraction and Experience

The theme that many examples should precede abstraction is one that runs through

the discussions of algebra curriculum reform. This theme also occurs in the conclusions of

Women's Ways of Knowing, a study of women's epistemology by Mary Belenkey and

colleagues:2

Most of these women were not opposed to abstraction as such. They found

concepts useful in making sense of their experiences, but they balked when

the abstractions preceded the experiences or pushed them out entirely. Even

the women who were extraordinarily adept at abstract reasoning preferred to

start from personal experience. (Belenkey et al. 1986, pp. 201-202)

These findings suggest that a serious attempt to teach the abstractions of algebra and

mathematical modeling to all will require either the development of activities that students

are willing to count as "personal experience," or a better understanding of the

extracurricular personal experiences of young women and how these experiences might be

transported into mathematics classes.

Feminist philosopher Maria Lugones (1987) discusses "travel" of an individual from

one situation to another. In her construction of situated knowledge, each person is viewed

not as a single unified knower but as a confederation of knowers; as a person moves from

one situation to another, she or he becomes a "different knower" whose actions and

understandings are predicated upon knowledge particular to the new situation. In order for

a person to function comfortably and appropriately in a situation it is important for her or

him to share in the language, norms, local history, and human bonds of that site.

Mathematics educators recognize the importance of the latter understandings when they

argue that instruction must engage students in the "culture" of mathematics.

For the woman cited by Marge Enneking and for many others, by the time the

student reaches grade eight or nine, mathematics class is already a different culture from

personal experience and requires a "different knower" in the sense of Lugones. The

problem for the teacher (and for the curriculum developer) is to recognize the need for

travel between the cultures of algebra and personal experience and to facilitate that

movement. This entails an understanding of not only the ways in which mathematics class
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differs from the personal experiences of young women but also the links that students

might construct in an effort to bridge those differences. In the following paragraphs, I offer

examples and discussion related to some of these differences.

The ways in which women personally experience mathematics outside of

mathematics classrooms include not only the use of numerical and geometric reasoning in

the pursuit of personal tasks but also the receipt of numerous messages concerning the

"maleness of mathematics." Newspaper articles, parents, guidance counselors, TV sit-

coms, and even Barbie dolls all deliver messages regarding the difficulty of math for

females in particular, the "inferiority" of women's performance in mathematics, and (in

many cases) the lesser importance of mathematical achievement to women than to men.

Regardless of the lunftruth of these messages, they are a "fact of life" salient in the

personal experiences of young women; efforts to bridge personal experience and

mathematics classes must recognize these messages explicitly and deal with them

(Damarin 1990). Bringing these messages (and analogous messages related to race) into

mathematics class for the purposes of countering them is critical to making algebra

accessible to all.

Other concerns are more directly related to the setting of mathematical problems

and the ways in which these are related to personal experience. The way in which a

problem is posed can have ramifications for the ways in which students take it up and/or

seek relations to personal experience. In the next few paragraphs, I discuss many issues of

experiences which surround the following interesting problem which originates in the

Quantitative Reasoning Project and which was presented by Alba Thompson at the Algebra

Initiative conference.

Fred and Frank are fitness fanatics. They run at the same speed and walk at

the same speed. Fred runs half the distance and walks half the distance.

Frank runs half the time and walks half the time. Who wins when they run a

race together?

As reported, the first response of most students to this question is that the race will

culminate in a tie. Upon being told that someone wins outright, the question becomes how

to think about this problem. One can begin by thinking about Fred or about Frank.

Thinking about Fred's behavior is a relatively simple matter. Invocation of the distance

formula is straightfo ward in part because experience with races suggests a fixed distance
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and brings to mind half way markers, mileposts, a known number of laps around a track, or

other means of conceptualizing Fred's ability to divide the total distance. There is no real

mystery as to how he can manage to split the distance easily for walking and running.

But Frank's behavior, based on the division of time, is a different matter.

Experience with races suggests that total time will not be fixed until the race is over;

moreover, the passage of time spent on a racecourse is not marked with the same neat

divisions as distance. How, then, can a student extrapolate from personal experience to

think about Frank's behavior? Attempts to model Frank's behavior lead to confusion and

questions: how does he allot exactly half of his time to each of two activities, especially if

he doesn't know what the total time required will be?

Some would be quick to point out that a model for Frank's behavior is not

necessary to the solution of this problem. For students (such as the young woman cited by

Marge Enneking) whose relation with mathematics has been made tenuous by repeated

assertions that "you don't need to understand, you just need to know/do," this observation

is not helpful. For them, it shifts the domain of relevant experience from that of races and

division of activity along various dimensions to that of mathematics classes and failures to

understand. In the sense of Lugones, this comment is an invitation to travel from being a

"knower" of races to being a "knower" of mathematics as "an alien world designed by and

for people different from us (Turkle, p. 119)."

Interestingly, in a generalized way, Frank's behavior is connected with the life

experiences of young women. The division of time (between family and career, between

role of wife and role of mother, between care of the self and care of others) is a primary

life issue for women. Indeed, sociologist William Maines (in Fennema 1985) has argued

from his data that the need of pubertal young women to prepare for multiple roles of

career, wife, mother explains the inability of (some) young women to give to the study of

mathematics the time and attention it requires. Whether these life conditions make female

students more likely to focus on Frank rather than Fred is a researchable question.

However, in this life context of time-sharing among multiple activities, the "news" that

Frank actually wins the race might be useful and encouraging information to young

women. Extrapolating mathematical findings to female personal experience through class

discussion might help bridge gaps between women and mathematics. Although the

problem setting involves named people and familiar events, it is exceedingly abstract; it
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demands a suspension of disbelief concerning the behavior of people in races. As stated,

the problem projects behavior and projects it a way that few would find plausible. (Why

on Earth would they walk so much? Wouldn't the trailing racer switch to running more

when he saw he was behind?) A change in setting might alleviate the plausibility issue;

consider

Racing Fans Disappointed

Courtesy of racing network news

Fans at the recent race between Fred and Frank were counting on the

time trials in which the contestants consistently walked at the same

speed and ran at the same speed. In the actual race, Fred walked half

the distance and ran half the distance. Frank walked half the time and

ran half the time. Fans who came out expecting a photo finish went

home disappointed.

This shift of the problem into the past tense and the presentation of it as a news

clipping change the relations to experience in several important ways. First, implausibly

rigid adherence to strategy on the part of Fred and Frank need not be assumed (indeed, the

reader can assume that the loser would likely change strategy for the next race). What we

have now is a report on a past event, but a report with critical missing information. Such

reports, and the strategies for "filling in the blanks" form the experience base to which

students might resort. With the simultaneous explosion of information on the one hand,

and growth of cryptic reporting of information (in the style of USA Today) on the other,

the ability to read beyond the "givens" may be a mathematically based skill of increasing

social importance.

As a final note on Fred and Frank, I would note that neither the maleness of both

racers, nor the setting in athletics is likely to affect women's ability to relate to this

particular problem (although problem sets in which all actors were male and/or all problems

concerned athletics might have such an effect). Indeed, by naming both racers as male, the

problem writer has avoided attaching sex to winning or losing.

The problem of Fred, Frank, and their fitness routines is interesting mathematically,

more interesting than most problems at this level. I hope I have amply demonstrated that it

is also interesting as a domain for exploring the relations between abstraction and

experience. I would hypothesize that, across many problems, the complexity of the
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abstraction-experience relationship is directly related to the mathematical interest of a

problem under consideration.

As we move toward the creation of a curriculum of "Algebra for All" which is both

relevant to the lives of students and productive toward preparing all students for the 21st

century, it is important to incorporate a fuller understanding of the experiences and

situations of all students. This will entail acquiring a better understanding of the

particularities of those situations and the creation of new ways of promoting student travel

between experiential and mathematical knowledge. Hypertext may provide a valuable

resource for delivering instruction and problem solving assistance (scaffolding) in ways that

reflect and honor student experience. However, before we can construct appropriate

hypertexts, we must gain better insights into the lives and experiences of all students. In

this regard, the fields of sociology, women's studies, black studies, and other ethnic

studies may be as valuable to the construction of the mathematics curricula of the future

as psychology and physics have been to the curricula of the past.
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Notes
1. There is another class of stories about negative experiences in mathematics classes:

these stories concern instructional practices which students (again, primarily females)

found threatening. Practices such as relay races in which students write answers on the

board and other activities which call for competition and/or public display of skill are cited

by many women as debilitative to their mathematics achievement and/or attitudes. (Also

see Isaacson 1991).

2. Belenkey, Clinchy, Goldberger, and Tarule studies 135 women from 5 educational

settings ranging from an elite women's college to a center in which welfare mothers were

taught skills of parenting, homemaking, and employability.
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Educating Teachers, Including K-8 Teachers,
to Provide Appropriate Algebra Experiences

Naomi D. Fisher
University of Illinois at Chicago

The first section of this paper leaves in place my thoughts and musings before the

conference. In the second section, I share some of my reactions to the discussions as

they relate to my original concerns.

Introductory Thoughts

The Algebra as Language Metaphor

The opening line of the conceptual framework for the conference, "Algebra is the

language of mathematics," invites speculation on the uses of language in general and how

these uses may be interpreted for the role of algebra. Some of the uses of language are

suggested below for the purpose of considering how teacher education may enable

teachers to use and teach algebra as a language. But the metaphor of algebra as language

also begs the question of whether or not the metaphor is itself adequate or proper as laying

the groundwork for disquisition.

Certainly, one level of language that algebra serves admirably is to put information

into succinct and unambiguous form which, in turn, allows easy manipulation of the

symbols to reveal basic relationships. Solving equations or systems of equations would

seem to be the prototype of school algebra. "Solving for x" has a mystique that transcends

our classes. This is likely the level of language that is being dealt with when we talk about

algebraic skills. I would like to pose the question (and perhaps introduce some expressions

here), "What level of language would we be addressing if we were to talk about developing

algebraic insight or algebraic intuition?" Since mathematical insight and intuition are much

more about thinking mathematically than is proficiency in manipulative skills, intuition and

insight should be essential to our educational program. Based on my intuition about

learning, these levels of learning should not be taught sequentially as hierarchical abilities,

but somehow be braided together in instruction.
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Do we study language for its own sake or as a means of communicating

knowledge? We can talk about the structure of language itself, questions of grammar or

rules. We can took at the pieces, vocabulary development. Perhaps some of the way out of

this dilemma is to push the algebra as language analogy further, language as a means to

shape, critique and disseminate cultural knowledge. Language is related to comprehension.

Language reaches its pinnacle in literature. What are the "literary" aspects of algebra that

are or should be in our K-8 curriculum?

Preparing Teachers for Teaching the Levels of Algebraic Language

What do teachers need to know if we are thinking of algebra in a cultural context?

As we are taking on the challenge to educate a diverse population, including such

categories as gender, learning styles, and cultural background, we are in the midst of a

paradox. While it would seem that different contextual settings are appropriate for each

group, we are trying to achieve some basic, universal education which would equip all

these factions of our population to understand one another and contribute to our society.

Teachers would likely benefit from knowing about the development of numbers and

algebraic structures in different cultures with two purpcses in mind: recognizing that there

is diversity in representation and in popular use of algorithms, and seeking to identify the

abstract concepts underlying each system. It is also possible that knowledge of the

development, the intellectual and historical influences, of algebra as we know it would

enhance the recognition of cultural diversity, on the one hand, but provide awareness of

the need to find a common form of expression on the other hand. Further, the study of the

development of arithmetic and algebra in different cultural settings should highlight the

cultural bases for the development of mathematics (i.e., what motivated civilizations to

start making mathematics).

In educating teachers, it is especially critical that connections with other fields of

mathematics, especially geometry, and the real world be made as an essential part of the

subject matter. Overwhelmingly, the population can be characterized as users of

mathematics (unfortunately, the reality in this country may better be described as avoiders

of mathematics) rather than creators of mathematics.

A question that arises is at what point do we want to separate college students

who are studying mathematics into tracks according to which they will be users of

mathematics? Some breakdowns according to future careers/professions are: teachers of
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primary school mathematics, teachers of elementary school mathematics, teachers of high

school mathematics, teachers of college mathematics, research mathematicians, engineers,

statisticians, computer scientists, and applied mathematicians. ideally, we would be able to

devise a core curriculum that allowed these groups to associate with one another for some

of their mathematics education. For teachers, it is especially important that they be aware

of and, indeed, know a variety of people who are serious users of mathematic's. The often

heard student refrain of "what's it good for" would best be answered before it is stated.

Teaching mathematics with a regular, nonartificial infusion of anecdotes and information of

its place in people's lives would be a strong position for teaching mathematics rather than

the usual defensive posture. The ultimate avoidance of a contextual mathematics, the worn

admonishment of "you'll need this later," will become archaic, one hopes.

Post Conference Remarks

The algebra as language metaphor really took on a new aspect in light of the

keynote address of Victor Katz on the learning and teaching of algebra in the last 4,000

years. The first shock was that our stock algebra word problems have been around from

ancient times. The difference between then and now is that problems were solved by

verbal algorithms without the benefit of algebraic symbols (i.e., there were no equations).

Ancient algebra texts sounded astoundingly contemporary but they looked weird by our

standards. What the ancients did have as a resource was the power of geometric models

to inform and give structure to their methods.

In my consideration about language and algebra, I would like to pose the possibility

that for learning algebra, geometry is a potent and eloquent visual language for teaching.

Continuing in an exploratory mode, considering ways to truly talk about algebraic

relationships may be an important link for preparing students for the symbolic

representation of algebraic relationships. Within the discussions at the conference, there

did seem to be agreement on having students experience algebraic situations before

abstractly presenting or codifying the material. My assertion is based on collecting rather

diverse statementsthe computer experiences advocated by James Kaput, the importance

of students looking at examples before proving results stressed by Michael Artin, and the

algebraic reasoning examples of children's experiences presented by Alba Thompson, to

mention a fewwhich did show the variety of contexts in which it should be possible to

let students "muck around" before settling down into formal notation or proof. This may
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be the avenue for developing "algebraic intuition" about which I expressed concern in my

first notes.

A Last Thought

The call for "algebra for everyone" has the ring of a political, not an educational,

statement. The historical perspective we gained at the conference underscored that algebra

has served political ends in the past, so we are reinterpreting an ancient tradition. The

consistency in the new movement, as so strongly presented by Robert Moses, is that we

are recognizing that algebraic know-how gives individuals power. But, whereas in the past,

the policy was to restrict algebraic power to an elite class, we now are challenged to see

that that knowledge is available to the many.
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On the Learning and Teaching of Linear Algebra*

Guershon Harel
Purdue University

Jacob, a prospective mathematics teacher at the end of his senior year, was given

the problem:

V is a 40 dimensional vector-space. U and W are subspaces

of V, dim U = 2, dim W = 3, Can dim (U fl W) = 0?

Jacob responded: "No, because there must be an overlapping between the two." From a

further conversation with him on why should U and W overlap, it turned out that he simply

viewed U fl W, and V as sets consisting of 2, 3, and 4 items, respectively, from which he

concluded that U fl W must be non-empty; the data concerning vector-space, subspace,

and dimension was totally ignored by Jacob. When the instructor asked "Is

U fl W a vector-space?," Jacob was unable to respond, nor was he able to respond to the

question, "What is the definition of vector-space?" And when the instructor asked Jacob

to give an example of a vector-space, he responded:

A polynomial ... The set of all polynomials of degree 10 ... The

set of all polynomials of degree 0. No, the first is not, because

when you multiply you get a higher degree so it is not closed.

Responses like Jacob's are not uncommon; they reflect the confusion studen 4 have with

linear algebra concepts (Hare) 1985).

Vinner (1985) would say that students like Jacob have failed to build adequate

concept images for the concept definitions we present to them. A concept definition,

according to Vinner, is a verbal definition, app aring in a textbook or written by the

instructor on the blackboard, that accurately describes the concept in a noncircular way.

A concept image, on the other hand, is a mental scheme, a network, consisting of (a) what

has been associated with the concept in the person's mind and (b) what the person

This short paper is part of a paper entitled "The Linear Algebra Curriculum Study Group Recommendations;
Moving Beyond Concept Definition," to be published in the College Mathematical Journal.
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can do in regard to the concept. It may include, for instance, analogies and relationships to

other concepts, propositions on or relating to the concept, examples and nonexamples,

ways of solving certain problems. It is worth mentioning that concept images do not .

necessarily include spatial visualizations, as the term image may suggest. In fact, it was

found that some people possess effective concept images, and yet their mode of thinking

is purely analytic, not spatially visual (Eisenberg and Dreyfus 1986).

The most important indicator for understanding a concept is the ability to solve

problems related to the concept, where by solving a problem, it is meant knowing both

what to do and why. This indicator, however, is too general, since problems can be of

different levels. In my research on the concept of proof (see below), I have defined four

other indicators for understanding a concept:

The ability to remember, not just memorize;

The ability to think in general terms;

The ability to communicate ideas in one's own words; and

The ability to connect ideas.

A student with an effective concept image is one who has these abilities relative to the

concept. In order for linear algebra students to develop effective concept images, they

must learn to not just memorize concept definitions but must construct rich and effective

concept images that will enable them to remember what they learn, think in general terms,

communicate, and connect mathematical ideas.

For most students, the construction of an effective concept image is a long and

painstaking process. It is not always easy for us, as teachers, to realize this fact, for, as

Piaget (1960) pointed out, a concept is deceptively simple when it has reached its final

equilibrium (i.e., has become part of the concept image), but its genesis is much more

complex. The building of an effective concept image in linear algebra requires a major

effort and sufficient time on the part of the students as well as their teachers. Yet, we

allocate only one course in the entire undergraduate mathematics curriculum to linear

algebra. In comparison, as Alan Tucker (1993) has pointed out, we devote an entire year-

and-half of the lower division core mathematics to calculus. Even with this amount of time,

calculus is still difficult for students, a fact which raises doubts on the sufficiency of the

time allocated to linear algebra.
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In the case of calculus, we understand that students must build solid concept

images for on-variable calculus concepts and, rightly so, we devote two courses to this

goal, before we introduce multivariable calculus. For example, we understand that students

must gradually abstract the idea of derivative by first dealing with it extensively in the case

of one-variable functions, then abstract it into higher, yet spatially imaginable, cases (i.e.,

real-valued functions f: R2 - R and 112-- R), and only then move to general. functions f:

R" - Rm. On the other hand, we do not seem to have the same patience for the

abstraction process in linear algebra. Nor do we take into consideration the obvious fact

that linear algebra concepts are indispensable for understanding many multivariable

calculus ideas. In most cases, ideas that require linear algebra background are shuffled

under separate sections of exercises labeled "Optional."

The imbalance between the time allocated to calculus and that allocated to linear

algebra is, in fact, even greater because high school mathematics is geared toward

calculus needs more than linear algebra needs. This argument may not be true if examined

solely from the viewpoint of content. High school curricula does include topics such as

systems of linear equations, analytic geometry, and Euclidean space; all are part of linear

algebra. But these topics are taught in high school in ways that have little to do with the

basic ideas of linear algebra. High school students are not prepared for the objects,

language, ideas, and ways of thinking that are unique to linear algebra.

From the students' point of view, calculus is a natural continuation of the

mathematics they learned in high school. After all, students deal with real numbers and

functions of real numbers in high school, and continue to deal with these objects in

calculus. Also, they are often impressed by the power of calculus tools to help them solve

problems in familiar domains, such as finding the area of nonstandard figures, or modeling

projectile motion. In contrast, students make little or no connection between the ideas they

learn in linear algebra and the mathematics they learn in high school. In the current

situation, the only connection that potentially exists between high school mathematics and

linear algebra is the study of systems of linear equations. But even this connection is

superficial. High school students' involvement with systems of linear equations amounts to

learning a solution procedure for 2 x 2 arid 3 x 3 systems. They do not deal with matrix

representations of these systems, questions about existence and uniqueness of solutions,

relations to analytic geometry of lines and planes in space, geometric transformations,
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matrix algebra and determinants. Evidence that students place a low value on the

relevance of linear algebra for high school mathematics can be derived from a recent

survey of mathematics education graduates of one major university in the United States.

In this survey, 45 percent of respondents believed that the value of linear algebra to their

profession is marginal or useless, in contrast to an average of only 13 percent who thought

so about calculus.

Clearly, there is a need to prepare students for the unique environment of linear

algebra prior to their first exposure to this topic in college. Below I will discuss two ideas

briefly: one deals with the need for and feasibility of incorporating linear algebra in high

school. The other, apart from this, suggests how, prior to their first course in linear

algebra, students can be acquainted with the environment of linear algebra.

I believe that there should be an introduction to linear algebra in high school. The

idea may seem too ambitious to some. But if we believe in the pedagogical importance of

and the need for a continuity between high-school mathei tics and college mathematics

and we recognize the problem of the insufficient time allocated to linear algebra in college,

then it should be clear that an introductory treatment of linear algebra in high school is a

necessity. Introducing linear algebra in high school does more than prepare students to do

matrix algebra and compute determinants. It will lay the grounds for-building rich and

effective concept images for linear independence, spanning set, vector-space, and linear

transformation. Students who would go through a linear algebra program in high school

will become motivated and more cognitively prepared to abstract these and other ideas in

their first college course in linear algebra. This is a worthy long-term investment which

requires a restructuring of the existing high school mathematics curricula. I suggest that

this restructuring take place in two areas: First, the traditional high school topicssuch as

systems of linear equations, analytic geometry, and Euclidean spacebe taught from a

linear algebra viewpoint. Second, given the imbalance currently existing between the time

allocated to linear algebra to that allocated to calculus, I suggest to reduce the high school

program in calculus.

The following is a very brief description of a linear algebra program which I have

developed for and implemented with upper level high school students. Results from several

teaching experiments showed that the program was highly successful (for more details,

see Hare! 1985 and 1989). The program consists of three phases: the first phase deals
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with the geometric spaces of directed line-segments. The objective of this phase was to

begin building effective, visually oriented concept images for important linear algebra

concepts. Further, the construction processes of these concepts were chosen to be

analogous to their construction in the general case. For example, when dealing with the 3-

dimensional geometric model, a basis can be defined as three noncoplanar line segments.

But such a definition is restrictive and model-dependent, since it does not transfer to

vector-spaces in general. In this program, this process is fully explored by showing how

the concept of basis in a geometric model is developed from a spanning set.

After the central concepts of dependence, independence, linear combination, basis,

and dimension are thoroughly studied in the line, plane, and space, I introduced the second

phase in which the algebraic spaces 111, R2, and 132 along with these central concepts are

built through the idea of vector coordinates. In fact, the unit dealing with these algebraic

spaces was mostly constructed by the students themselves through individual and team

projects. One of the pedagogical values of this stage is that students could see in a

concrete environment how one mathematical system can be transformed into another

system which is more amenable to computational techniques. The resulting system is, of

course, isomorphic to the original. Finally, in the third phase, these central concepts are

defined a third time in Ft", with the introduction of linear transformation and their matrix

representations in R2 and R3. More specifically, this phase dealt with: analytic geometry of

the plane and space; systems of linear equations (algebraic and geometric investigations);

linear transformations in the plane and their matrix representations; and matrix algebra.

The LACSG recommendations have set forth the standard for the first course in

linear algebra to be an intellectually challenging course, with careful definitions and

statements of theorems, and proofs that enhance understanding. From a cognitive and

pedagogical viewpoint, a linear algebra course that stresses proofs is both a necessity and

a challenge. It is a necessity because the emphasis on proofs is indispensable for the

development of rich and effective concept images in linear algebra. Without understanding

the reasoning behind the construction of concepts and the justification of arguments,

students will end up memorizing algorithms and reciting definitions. It is a challenge

because, as we all know, proofs are a stumbling block for ma;..y students. Research has

shown that many students carry serious misconceptions about proofs. For example,

students do not understand that inductive arguments are not proofs in mathematics (Martin
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and Harel 1989); they do not see the need for deductive verifications (Martin and Harel

1989; Venner 1977); they are influenced by the ritualistic aspect of proof (Martin and

Harel 1989); and they do not understand that a proof confers on it a universal validity,

excluding the need for any further checking (Fischbein and Kedem 1982). This situation

requires, therefore, careful consideration and special attention to the teaching and learning

of mathematical proof.

In the current situation, the first course in linear algebra, if it emphasizes proofs,

would be students' first experience with algebraic proofs, because calculus often is being

taught proof-free and, traditionally, the idea of proof, as a deductive process, where

hypotheses lead to conclusions, is stressed in the teaching of geometry but not in the

teaching of algebra. Philip Davis and Reuben Hersh (1982) pointed out that "as late as the

1950s one heard statements from secondary school teachers, reeling under the impact of

the 'new math,' to the effect that they had always thought geometry had 'proof' while

arithmetic and algebra did not." The death of the "new math" put an end to algebra proofs

in school mathematics.

In the last few years, I have been working on the epistemology of the concept of

mathematical proof with students at various levels. One of the conclusions coming from

this work is that a major reason that students have serious difficulties producing,

understanding, and even appreciating the need for proofs is that we, their teachers, take

for granted what constitutes justification and evidence in their eyes ( Harel, in preparation).

Rather than gradually refine students' conception of what constitutes evidence in

mathematics, we impose on them proof methods and implication rules that in many cases

are extraneous to what convinces them. This begins when the notion of proof is first

introduced in high school geometry. We demand, for example, that proofs be written in a

two-column format, with formal "justifications" whose need is not always understood by a

beginning student (e.g., Statement: AB = AB. Reason: Reflexive property). Also, we

present proofs of well-stated, and in many cases obvious, propositions, rather than ask for

explorations and conjecturing. As a consequence, students do not learn that proofs are

first and foremost convincing arguments, that proofs (and theorems) are a product of

human activity, in which they can and should participate, and that it is their responsibility

to read proofs and understand the motivation behind them.
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No one can expect to remedy students' misconceptions and "fill in" other missing

conceptions about proofs in one single course. To meet the challenge to teach a linear

algebra course that emphasizes proof, we must succeed in educating our students

throughout the mathematics curriculum in school and college to appreciate, understand,

and produce proofs. The movement toward this important goal cannot start in the first

course in linear algebra; it must begin in the high school years and continue into the

calculus courses. In fact, with a careful approach and a suitable level, we should begin

educating students about the value of justification (not mathematical proof, of course) in

the elementary school years. Despite this, I believe that an emphasis on proof in the first

course in linear algebra, as was recommended by the LACSG, is vital.
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Algebra: The Next Public Stand for the Vision of
Mathematics for All Students*

Henry S. Kepner, Jr.
University of Wisconsin-Milwaukee

Across the state and nation, the call for credibility in school mathematics is focused

on a thing called "algebra"emphasized by the call of algebra for every student. First, this

is a response to the recognized need for increased mathematical reasoning and application

by all members of society. No longer can the work force function with only a few

individuals with mathematical sophistication beyond arithmetic! Second, it is the

recognition of the inappropriate use of mathematics, specifically algebra and calculus, as

gate keepers in our society. Tracking in mathematics is a major force in effectively

excluding individuals from many academic and vocational pursuits.

We must involve all of our constituenciesstudents, parents, leaders from

business, and educators at all levelsin addressing the challenge of algebra for all

students. The task will be a difficult, time-consuming onefor everyone involvedbut we

cannot ignore the need. The task will involve major changes of beliefs about what algebra

is, how one does algebra, and who can learn algebra. Technology has opened up

mathematics to individuals in just about every line of work. We must challenge the widely

held American belief that mathematical ability is hereditary.

Redefining Algebra

School algebra evolved as performance of symbolic algebraic procedures, such as

solve, simplify, factortypically as isolated, symbolic manipulations. Recently, an Algebra I

student reported: "Of course it doesn't make sense. This is algebra; it's not supposed to

make sense." We must do something different! The vision of algebra for all students must

be clarified and communicated openly within the education community and beyond. First,

what is the algebra deemed necessary for all students? Second, how do we change

expectations about what algebraic performance isfor teachers of algebra? for students?

for parents? for postsecondary gate keepers? for employers? for district administrators?

This article appeared in Educational Forward, Wisconsin Department of Public Instruction, May 1993.
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Third, how do teachers, schools, districts, and states monitor student performance in

using this algebra? In the fast changing world of mathematics, science and technology,

there is no single answer to these questions.

Lynn Steen (1992), director of the Mathematical Sciences Education Board and

former president of the Mathematical Association of America, states, "For most students

the current school approach to algebra is an unmitigated disaster. One out of every four

students never takes algebra... And half the students who do...leave the course with a

lifelong distaste for mathematics."

Algebra as a Human Endeavor

Numerous groups and projects are making recommendations on algebra for all

students. Most call for the immersion of algebra skills in an applied and conceptual

curriculum. They suggest the building of an algebra curriculum extended over many years,

from the primary grades on, where students search for and describe mathematical

patterns. In such a program, algebraic reasoning, descriptions, and symbols are used to

describe the world around us!

Many of the projects recommend the concept of function as the unifying theme.

Special attention is given to building tables of data and their graphs from observed patterns

and experimental data. Experimental data coltection from the sciences, social studies, and

real world call for comparison between two traits or characteristics in contextual problems.

"How does one trait vary as we change the other?" This is a powerful meaning of the term

variable, which is narrowly used in traditional algebra of symbol manipulation.

This is the algebra that is used by most adults in everyday life. The reading and

interpreting of graphs or tables of data that may show relations between factors. Major

decisions are made on the interpretations of these relations!

Even before symbol manipulation skills are learned, students should see and discuss

meaningful linear, quadratic and exponential data. Such data exists in middle school

science and social studies material. Well-chosen examples introduce students to a major

reason for using "algebra"modeling real-world situations. Attention to this view

reinforces mathematical connections, not only a nod to applications outside of

mathematics but to connections within mathematics to measurement, statistics, and
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geometry. Additionally, there are connections among algebraic representationsgraphic,

numeric (often tables), and symbolic.

The Tools of Algebra

We must publicize the set of tools that are meaningful in the learning and doing of

algebra. Technology (graphing calculators and spreadsheets) and manipulatives (e.g.,

algebra tiles, integer chips, geoboards) are showing positive value in students' conceptual

base and use of algebra. This is particularly important for students who approach algebra

with a weak or uneven background and low self-esteem in mathematics. In the past, the

use of technology has been delayed until students could do symbolic manipulations by

handjust as was once required with long division and messy fraction calculations. Now

there are several algebra curricula which require, or strongly encourage, the use of

graphing calculators on a regular basis. At today's prices, a classroom set of 30 calculators

is approximately $2,000, the price of one computer workstation.

Algebra for All in a Variety of Ways

As districts move to consensus on algebra for all students, the implementation plans

vary. In some cases, such as Milwaukee Public Schools, all students will be in algebra by

the ninth grade. In other districts, a challenging middle grades mathematics program builds

algebraic reasoning and multiple algebraic representations of relationships across the

curriculum. Many schools use the Wisconsin Applied Mathematics Guidelines, which

includes algebra in an integrated program for traditionally noncollege-bound students.

Changes in Postsecondary Mathematics

While often slow to change, college requirements and examinations are beginning to

change. At UWM, the course, Contemporary Applications of Mathematics, is offered as an

alternative to Intermediate Algebra as mathematics competency for university graduation. I

taught this course in the Mathematics Department in fall 1992, and I will teach it again

next fall. All my students had struggled with traditional algebra several times in high school

and postsecondary courses. While their math backgrounds had many holes, I found these

students to be good at mathematical reasoning when done in contextual settings. They

were involved, and often excited about the topics which included management sciences

(networks, scheduling, and linear programming), statistics (sampling, surveys, and

statistical inference using confidence intervals), social decisionmaking (weighted voting
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systems, fair division and apportionment, and game theory) and exponential growth and

applications. Many of these students were slow and poor in algebraic manipulation, but

they developed _algebraic reasoning and representations for significant mathematical

settings they would have never seen in Intermediate Algebra.

A change of view on what algebra is will require thorough, on-going discussions

about expectations with staff, school administrators, parents, and community members.

First reactions often will be similar to those encountered when the inclusion of calculators

in the elementary grades was first introduced. We must be ready to carry on the dialog

in-depth and over time.

As education leaders, no matter our levels of responsibility, we must be ready to

respond to parents, the public, and colleagues on expanding mathematical knowledge

beyond arithmetic for all students. This is a challenge consistent with the NCTM Standards

and the national concern for improved mathematical power.

References
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Report of Working Group 3

Susan S. Forman
Mathematical Sciences Education Board

During the early stages of their discussion, the group agreed on the following

premises:

The technical work force comprises all employees in technical positions,

including those with high school, associate, bachelors, or advanced degrees.

Students need to master two things to be able to succeed in the technical

work force: appropriate mathematics content and skills for independent

learning.

Further discussion focused on the need to identify the "big ideas" that students ought to

know; organize the algebra curriculum so that students learn to use mathematics as a

resource to solve problems and model situations; and create a mathematics program that

values diverse ways to succeed.

Areas of consensus:

There is a common core of mathematics that all students should study

through grade 11.

Algebra should be a significant part of that curriculum, although not

necessarily a discrete course.

Two-year college faculty need to develop courses for technical education

based on concepts and skills developed through the study of algebra.

The mathematics community needs to gather better information about the

kinds of mathematics and reasoning skills that are needed in the work force.

The education community needs better information about what schools

should be doing to prepare students more effectively for the school-to-work

transition.

A broad spectrum of people (mathematicians, mathematics educators, and

users of mathematics) need to be involved in the effort to change the

curriculum and improve the ways in which algebra is learned and taught.
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All mathematics courses (K-16) should integrate preparation for the technical

work force into the curriculum; pedagogy in those courses should prepare

students to become independent learners of mathematics and other technical

subjects.

The mathematics we are teaching to 7th and 8th graders is it of date.

These courses were developed prior to World War II for students who did not

expect to continue their formal education beyond those years and were

intended to help students develop "shopkeeping" skills in mathematics. The

courses need to be revisited and redesigned.

There were no real areas of disagreement.

Recommendations

All students should study the same mathematics curriculum through grade

11, but not the curriculum that currently exists. Mathematics courses in

grade 12 should offer many alternatives. The mathematics curriculum should

be grounded in problemsolving that reflects real-world situations and offers a

variety of methods of solution. Assessment should be an integrated Part of

every course. Students should have opportunities to participate in group

work, make appropriate use of technology, and develop their communication

skills, including reading and writing technical material.

Community college mathematics faculty must be involved in curriculum

development in technical areashealth, human services, business and

information management, agriculture and agribusiness, and engineering and

industry. They also must take an active role in needs assessment and

articulation with secondary schools and 4-year colleges and universities. The

2-year college mathematics curriculum should provide students with wide

options, including transfer to 4-year colleges. In some cases, intervention

programs may be needed to prepare students for transfer.

Research is needed into the kinds of mathematics students will need to be

successful employees in a technical work force. Discovering how

mathematics is used in the workplace is a subtle research problem that

should be carried out by mathematicians who can recognize when math is

being used in situations that do not look like textbook examples.

158



Algebra, Jobs, and Motivation

Paul Davis
Worcester Polytechnic Institute

For all types of students, the first exposure to algebra is the beginning of a

transition from numbers to letters, from concrete to abstract language. The importance of

learning algebra as a language rather than as a set of memorized rituals will not be

apparent until students recognize its power as a problem solving tool. Important questions

of "Why?" and "What if?" can be posed and answered in this new language, a key feature

too often concealed from students.

A core set of algebra skills can be defined by identifying the kinds of problems the

target audience needs to solve. Besides defining the core, those problems must motivate

the study of algebra. Indeed, one could argue that no concept of algebra should be taught

unless it can be motivated by a problem that is likely to be part of the students' experience

in the near future. Unfortunately, the mathematics itself may be hiding in a spread sheet,

for example. Or its real value may appear in the need for careful quantitative reasoning

rather than in explicit manipulation of symbols. Ideally, students can be motivated both by

the need to acquire quantitative thinking skills and by the demands of specific technical

challenges. In any case, the problems of uncovering mathematics at use in the workplace

and conveying those experiences to students are formidable challenges that must be

overcome. (The beginnings of one attempt at the graduate level in mathematics are

described by P.W. Davis 1991, a SIAM Report.)

More simply, one can identify some specific skills students need at the pre-college

level through widely available licensing examinations for many trades and professions.

Students who aspire to become plumbers, electricians, or health care professionals, for

example, will be asked to find areas of plane figures and volumes of common solids on

their licensing examinations. They will have to manipulate relationships involving rates and

slopes to pass those exams and to cope with their daily work.

Identifying these explicit challenges and conveying them to students can provide

motivation of a very concrete sort. Of course, an algebra curriculum needs to go far

beyond the need for formulas if it aims to develop flexible quantitative thinking skills.
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Can algebra be presented as the key that unlocks those doors rather than the bar

that blocks them? Can algebra become the language of the relationships among

dimensions, areas, and volumes? Among rise, run, slope, and rate? Can it become the

language of success, opportunity, and access?

Mastery of the language Of algebra also lays a foundation for mathematical

maturity. Familiarity with mathematical ideas enables an auto mechanic to manage

comfortably the business affairs of an independent garage, to make informed decisions

about loans and equipment depreciation. Good algebra skills set the stage,for a trained

secretary to undertake basic accounting and advance to a position as manager of a small

business. Those same skills enhance the computer literacy of an electronic technician with

the ability to implement spreadsheet calculations that speed and record a new procedure

for testing equipment.

Necessity builds ownership, and genuine applications are evidence of the necessity

of algebra in the professional life of the technical work force. Students will take ownership

if their algebra courses incorporate authentic applications like those they will encounter in

their professions. The challenge is identifying those applications and using them as

instructional vehicles.
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To Strengthen Technical Education Systemically

James G. Greeno
Stanford University and the Institute for Research on Learning

We should undertake to develop a system of educational development, research,

and practice that enables technical education to evolve progressively, increasing in its

productivity and value for American workers, businesses, and the society. Components of

such a system would include:

Ongoing research, development, and practices of workplace activity to

understand and improve mathematical reasoning and understand'n2 that are

integral in productive work and continuing learning in technical Jccupati o n s ;

Ongoing research, development, and practices of technical education in

mathematics to understand and improve preparation of students to become

productive workers and learners in technical occupations;

Ongoing interaction among the communities concerned with technical work

and technical education with communities concerned with mathematics

education in pre-technical schooling, to understand and improve the inclusion

of mathematical learning activities that prepare students well for technical

education and work in the general curriculum.

Mathematical Reasoning, Understanding, and Learning in Work

The ways in which mathematical reasoning and understanding are involved in

productive work are poorly understood, but scientific resources are available for developing

a strong knowledge base about these processes. As Richard Lesh pointed out in our

workshop discussions, most job analyses of the kind that are done currently take an

inappropriately limited view of mathematics that tends to recognize only standard symbolic

operations as mathematical reasoning. A more realistic view would recognize the need for

many workers to represent and reason about quantities and complex quantitative relations

in ways that are crucial for job success, but that often do not use standard forms of

mathematical representation in job settings.
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Researchers in cognitive science have developed methods to investigate and

characterize knowledge of procedures and concepts by individuals, and researchers in

social science have developed methods to investigate and characterize patterns of social

and individual activity in technical work. There is a strong potential for interdisciplinary

work that would merge these lines of scientific accomplishment in ways that would

provide important basic understanding of the requirements for mathematical understanding

and reasoning in successful job performance.

Technologies for the support of technical work are often designed to off-load

cognitive activity, rather than to support individual and social processes of reasoning,

understanding, and learning. Rather than trying to minimize cognitive involvement in work,

we could design information systems that would engage workers significantly and support

learning so that their knowledge, understanding, and abilities for reasoning in work would

grow productively in their work activities. Development of technologies designed for

learning by individuals and groups in their work and research about the individual and

social aspects of cognition and learning in work should be two aspects of a single activity,

in which better technologies are suggested by results of research, and research examines

the functioning of new technologies in order to support further improvements.

An important goal would be to organize technical work in ways that supported the

development of careers, building into the work of any job resources for learning that would

qualify successful workers for meaningful advancement. Such reorganization would need

supporting analyses not only of the cognitive and behavioral aspects of success in specific

jobs but of requirements for success in more advanced jobs, and how work experience can

provide the basis for performance and learning in those more advanced positions.

Meaningful Mathematics Curriculum for Technical Work

Studies of the processes of mathematical reasoning, understanding, and learning in

work should be integral components of projects that also include development of

mathematics curriculum designed to prepare students for those kinds of reasoning,

understanding, and learning. These curriculum efforts would be focused particularly in

community colleges, technical training schools, and mathematics coursework in the last

year or two of high school for students who are not intending to enter 4-year colleges and

universities.
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The development of such curricula would be consistent with general efforts being

made in mathematics education reform. These efforts are developing environments and

teaching methods for meaningful mathematics learning, involving understanding of

mathematical concepts and methods both in contexts of mathematical inquiry and in

contexts of use of mathematics to reason and understand in other domains. It seems likely

that the mathematics curriculum for technical work might emphasize understanding of

mathematical ideas and methods as resources for reasoning in other domains. Development

of that curriculum requires progress in fundamental knowledge of what constitutes

generality of mathematical understanding. Such general understanding is different from

knowing how to manipulate abstract symbols, but probably includes symbolic fluency. One

crucial question is how mathematics can be 'earned so that its symbols can function

effectively as a language for formulating and solving problems in other domains with

understanding and communicating effectively about alternative conjectures and courses of

action.

Mathematical Preparation for Technical Education and Work

Concerns about technical education should play a major role in shaping the general

curriculum in mathematics that students will have through most of their elementary and

secondary school education. Achieving the major general goal of reform efforts, to foster

practices of mathematical reasoning and sense-making, can contribute to the value of

mathematics education for all students, including those who eventually enter the technical

work force. For mathematics education to benefit all students, however, we need to

fundamentally restructure the social organization of mathematics learning away from its

present emphasis on selection of students who are qualified to continue in serious

mathematical study, to an activity in which all students are expected to succeed and are

supported in developing their abilities to participate in meaningful mathematical practices,

as Robert Moses emphasizes.

An Agenda for Developing a National Competence for Technical
Mathematics Education

Goals such as these will not be achieved by simply instituting a program. Instead,

we need to build a basic competence for the educational system to evolve in positive

directions. This competence should include structures of support for collaborative research,

development, and practice.
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The effort will require the participation of educational practitioners, educational

researchers, developers of curriculum and learning environments, and members of

professional communities that practice the kinds of technical work that students are

preparing for. Members of these communities have knowledge and abilities that could

support productive participation in these efforts, but a substantial investment would be

needed to support development of practices of collaboration in which the required multiple

resources can be utilized for the benefit of technical mathematics education.

Development of the research agenda for studying mathematical reasoning and

understanding in work can be accomplished by constructing collaborations of researchers

who study the social and individual aspects of cognition, along with mathematics

education researchers and members of technical professions. These studies would

investigate processes of social interaction and individual reasoning in work settings,

focusing on ways in which understanding of mathematical concepts and principles

functions in effective work activity. They also should include efforts to design resources to

support learning in technical work, including technologies that engage workers in

collaborative reflection about their methods of recognizing and solving problems in their

work activity.

Such studies need to be coupled with efforts to develop curriculum materials,

learning environments, and teaching practices that prepare students for the kinds of

individual and social activity that are important for success and advancement in technical

occupations. This will require the collaboration, in addition to the groups discussed above,

of educational practitioners in community colleges, technical education programs, and

secondary schools, along with professional mathematicians who will contribute insight into

significant aspects of the subject matter. Such collaborations need to provide for

engagement of all the participants in the various functions of the activity, including

analyses that contribute to research products as well as development of materials and

practices that contribute to the improvement of educational activities.
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Thoughts About Reshaping Algebra
to Serve the Evolving Needs of a Technical

Workforce

Richard Lesh
Educational Testing Service

At each grade level in school, and in each mathematics course that is offered, the

justification for what is taught and how it is taught is mainly based on conceptions (which

are often naive and misinformed) about what is needed as preparation for the next

mathematics course in the program. Therefore, in a perverse and distorted way, the goals

of the entire mathematics curriculum are aimed to serve the fraction of 1 percent of the

students who never quit taking more courses (i.e., doctoral students in Mathematics); and

this is the case in spite of the fact that potential Ph.D.'s in mathematics are as poorly

served as any other subgroup of students by the poor quality of mathematics that is

offered.

What would the algebra curriculum look like if an attempt actually was made to

teach mathematics so as to be useful to meet the needs of a technical work force? The

following fact is clear. If today's responses to this question are the same as they were (or

could have been) 10 years ago, then the chances are high that we are seriously naive and

misguided. Furthermore, what is taught may be far less significant than how it is taught.

During the past decade, a revolution has occurred in the core curriculum areas

reading, writing, and mathematics. Powerful conceptual technologies are used on a daily

basis in fields ranging trim the sciences to the arts and the humanities, and in professions

ranging from agriculture to business and engineering, and in employment positions ranging

from entry level to the highest levels of leadership; and these tools have radically

expanded the kinds of knowledge and abilities which are needed for success in a

technology-based society, and the kinds of problem-solving/decision-making situations

which are priorities to address in instruction and assessment. For example, when a

business manager uses a graphing calculator (or a graphics-based spreadsheet) to make

predictions about maximizing cost-benefit trends, these tools not only amplify the

manager's conceptual and procedui al capabilities when dealing with old decision-making
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issues, they also enable the manager to create completely new types of business systems

which did not exist before the tools were available; and completely new types of problems

and issues arise as priorities to address.

As an appendix to this brief paper, I have attached a comparison of mechanistic and

organic views of mathematics, learning, and problem solving. My claim is that, as long as

mathematics educators cling to the kind of mechanistic views that are described, it will do

little good to tinker with the topics that are taught, or the problems that are presented, in

algebra instruction. However, shifting to organic views involves much more than simply

making a vow to do so. Just as at other levels of the mathematics curriculum, such a shift

will only be accomplished effectively when reforms are based on a solid body of research

investigating the nature of students' knowledge (e.g., in topic areas such as whole number

arithmetic, rational numbers, or proportional reasoning). Yet, in the area of algebraic

knowledge and abilities, the research base is only beginning to develop.

In the absence of the preceding research base, it seems likely that the scenario that

plays itself out will be much the same for algebra as it was for other levels and types of

mathematics instruction. That is, in the history of mathematics and science education

R&D, every decade or so, the pendulum of curriculum reform swings from emphasizing

behavioral objectives (BOs: strings of factual or procedural rules) to emphasizing process

objectives (POs: content & content-independent processes and strategies), or vice versa.

Also, periodically, some attention is given to affective objectives (AOs: feelings, values).

Yet, in all of the preceding cases, cognitive objectives (COs: models for describing patterns

and regularities in the world) tend to be almost completely neglected. To a large extent, for

curriculum reform in algebra, the rhetoric that I hear about algebra instruction sounds like

little more than another swing from BOs to POs and AOs; and, if this is the case, then I

see little more chance of success this time than at similar times in the past.

Each time another curriculum reform is attempted without success, post hoc

assessments tend to notice thatin the euphoria of developing exciting new instructional

materials (e.g., books, software)two factors were once again neglected: nacher

development and assessment.

At the level of high school/college mathematics, as much as at any other level of

the curriculum, instructors notions about the nature of students' knowledge is extremely
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naive; and the assessment instruments that are used reflect only narrow, shallow, and

biased views about what it means to understand the domain in question.

in the past, if a narrow conception of mathematical ability was correlated with a

more representative interpretation, testing specialists tended to treat modest (.5 to .6)

correlations as though they were sufficientthat is, sufficient for selecting

small-but-adequate numbers of students for access to scarce-but-adequate resources. But

today, even beyond concerns about fairness, national assessment priorities have changed.

At a national level, our foremost problem is not to screen talent; it is to identify and nurture

capable students. The pool of students receiving adequate preparation in mathematics is

no longer adequate; and far too many capable students are being "shut out" or "turned

off" by textbooks, teaching, and tests which give excessive attention to views of

mathematics and problem solving which are fundamentally inconsistent with national

curriculum and assessment standards for school mathematics.

My own research on real-life problem solving suggests that most students, including

those who have been identified as unlikely to succeed, are able to invent more powerful

mathematical ideas than their teachers are trying to teach (Lesh & Lamon 1992). Yet these

abilities seldom are recognized or rewarded because of the impoverished conceptions of

mathematical ability that are built into most textbooks, tests, and teachingespecially at

the level of introductory college-level mathematics.

How can a broader range of mathematically capable students be identified and

encouraged? Our research suggests that the key is to focus on the kind of models and

modeling processes that are needed when elementary mathematical systems are used to

describe, explain, manipulate, predict, or control everyday problem solving situations (Lesh,

Hoover, & Kelly 1993). On the other hand, our research also suggests that new students

are not likely to emerge if modeling is treated as another attempt to teach

content-independent Po lya-style heuristics, strategies, and processes (POs), or if the

applications are used mainly as devices to increase motivation and interest (AOs).

As a result of the conference at which this brief paper was presented, there were

many reasons to be hopeful about the chances of success for curriculum reform in algebra.

For example, mathematicians have always been well represented among those who are

willing to devote extraordinary amounts of time and energy to the improvement of

education for all students. On the other hand, the community of university-based

167

A 0



mathematicians sometimes tend to be a rather arrogant and impatient lot, and they are

often unwilling to question the validity of the implicit theories about learning and problem

solvingor their prejudices about what should be taught and how it should be taught in

schools.

Simplistic solutions and piecemeal approaches to curriculum reform will be no more

likely to succeed for algebra instruction than for any other level or strand of the

mathematics curriculum; and many basic questions remain unanswered which will be

critical for long-term progress. For example, even in this brief paper, my comments have

touched on issues ranging from equity to technology to psychology and to competency in

real-life situations. Clearly, some immediate actions can be taken which are likely to yield

positive effects. But, at the same time that action-oriented initiatives are taken, similar

resources should be devoted to basic research as well as to the translation of practical

problems into researchable issues, and to the translation of research results into practical

implications.
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Appendix
A Comparison of Mechanistic and Organic Views of Mathematics,

Learning, and Problem Solving

The Nature of Mathematics

Mechanistic Perspectives

The objectives of instruction are stated in this form: Given...the student will ... That

is, knowledge is described using a list of mechanistic condition-action rules (definitions, facts,

skills) some of which are higher order metacognitive rules for making decisions about: (1)

which lower level rules should be used in a particular situation, and (2) how lower level rules

should be stored and retrieved when needed.

Organic Perspectives

Knowledge is likened not to a machine but to a living organism. Many of the most

important cognitive objectives of mathematics instruction are descriptive or explanatory

systems (i.e., mathematical models) which are used to generate predictions, constructions, or

manipulations in real life problem solving situations ... or whose underlying patterns can be

explored for their own sakes.

According to the Mathematical Sciences Education Board's Reshaping School

Mathematics, two outdated assumptions are that: (i) mathematics is a fixed and unchanging

body of facts and procedures, and (ii) to do mathematics is to calculate answers to set

problems using a specific catalog of rehearsed techniques. (p. 4) As biology is a science of

living organisms and physics is a science of matter and energy, so mathematics is a science of

patterns. ... Facts, formulas, and information have value only to the extent that they support

effective mathematical activity. (p. 12)

The Nature of Problem Solving

Mechanistic Perspectives

In general, problem solving is described as getting from givens to goals when the path

is not obvious. But, in mathematics classrooms, problem solving is generally restricted to

answering questions which are posed by others, within situations that are described by

others, to get from givens to goals which are specified by others, using strings of facts and

rules which are restricted in ways that are artificial and unrealistic. In this way, students'
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responses can be evaluated by making simple comparisons to the responses expected by the

authority (the tutor).

Organic Perspectives

Many of the most important aspects of real-life problem solving involve developing

useful ways to "think about" the nature of givens, goals, and possible solution paths.

Solutions typically involve several "modeling cycles" in which descriptions, explanations, and

predictions are gradually refined and elaborated. Therefore, several levels and types of

responses are nearly always acceptable (depending on purposes and circumstances); and

students themselves must be able to judge the relative usefulness of alternative models.

Problems in textbooks and tests tend to emphasize the ability to create meanings to

explain symbolic descriptions; but real problems more often emphasize the ability to create

symbolic descriptions to explain (manipulate, predict, or control) meaningful situations. For

example, for a mountain climber, the main problem is to understand the terrain of a given

mountain or cliff; and, once the terrain is understood, the activity of getting from the bottom

to the top is simply a (strenuous, complex) exercise.

The Nature of Experts

Mechanistic Perspectives

Humans are characterized as information processors; and outstanding students

(teachers, experts) are those who flawlessly remember and execute factual and procedural

rules ... and who are clever at assembling these facts and rules in ritualized settings.

Organic Perspectives

Experts are people who have developed powerful models for constructing,

manipulating, and making sense of structurally interesting systems; and they are people who

are proficient at adapting, and extending, or refining their models to fit new situations.

The essence of an age of information is that many of the most important "things" that

influence peoples' daily lives are communication systems, social systems, economic systems,

education systems, and other systems which are created by humansas a direct result of

internal structural metaphors which structure the world at the same time they structure

humans' interpretations of that world. Therefore: (i) there is no fixed and final state of

evolution, even in the context of elementary mathematical ideas, and (ii) reducing the
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definition of an expert to a single static list of condition-action rules is impossible (in principle)

... not just difficult (in practice).

The Nature of Learning

Mechanistic Perspectives

Learning is viewed as a process of gradually adding,.deleting, and de-bugging

mechanistic conditionaction rules (definitions, facts, or skills).

Organic Perspectives

Humans are model builders, theory builders, and system builders; and the models that

are constructed develop along dimensions such as concrete-to-abstract, particular-to-general,

undifferentiated-to-refined, intuitive-to-analytic-to-axiomatic, situated-to-decontextualized, and

fragmented-to-integrated. Therefore, development often involves discontinuities and

conceptual reorganizations .. such as those which occur when students go beyond thinking

WITH a given model to also think ABOUT it. Experts not only know more than novices, they

also know differently.

If the precise state of knowledge is known for an expert (E) and for a given novice (N),

then the difference between these two states is portrayed as the subtracted difference (E-N).

The Nature of Teaching

Mechanistic Perspectives

Teaching is considered to involve mainly: (i) demonstrating relevant facts, rules, skills,

and processes; Hi) monitoring activities in which students repeat and practice the preceding

items; and (iii) correcting errors that occur.

Teaching focuses on providing carefully structured experiences for students ... where

they confront the need for mathematically significant models, and where responses involve

constructing, refining, integrating, or extending relevant models.

Organic Perspectives

According to the Mathematical Sciences Education Board's publication Everyone

Counts: The teaching of ma hematics is shifting from an authoritarian model based on

"transmission of knowledge" to a student-centered practice featuring stimulation of learning."

(p. 5) ... Teachers should be catalysts who help students learn to think for themselves. They

should not act solely as trainers whose role is to show the "right way" to solve problems. ...

The aim of education is to wean students from their teachers. (p. 40)
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Algebra for the Technical Workforce
of the 21st Century

Patrick Dale Mc Cray
C.D. Searle & Company

Like everything else, the algebraic needs of the technical work force are continually

changing over time. What arc the impediments to chang the curriculum in algebra?

What are some of the algebraic concepts, educational issues, and possible approaches

which may prove useful in educating students in algebra? This essay considers these ideas

from the perspective of the educational needs of students planning on entering the

technical work force in the 21st century.

Many people feel that U.S. students are already entering the technical work force

with inadequate preparation in mathematical problem solving, planning and optimizing, and

mathematical modeling. With the increasing mathematization of human affairs in the social,

cultural, commercial, and scientific spheres we are currently experiencing and can expect

to continue, the preparation of people destined for the technical work force will only get

worse and not better if no attempts are made to reform instruction in mathematics in

gene:al and algebra in particular. (See Glimm 1991; Friedman, Glimm, and Lavery 1992.)

This essay is based on the perspective of one individual's career in industry which

has spanned more than two decades. This career has consisted of a series of positions in

many applied computer departments in a pharmaceutical company. The departments

ranged from scientific and statistical computer support, centralized corporate management

information systems, main frame system software, and back again. The work involved

provided exposure to many facets of the algebraic plight of people in the technical work

force and the application of mathematical sciences to the pharmaceutical industry, from

undergraduate student interns to doctoral level research scientists.

Impediments to Curricular Change

One of the biggest impediments to change within many businesses seems to be the

fact that the management structure usually does not perceive mathematics in general and

algebra in particular as being relevant to the day-to-day affairs of the company. This has

been one of the common understandings brought to light by the Mathematical Association
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of America's Committee on Mathematicians Outside Academia in a continuing series of

panel sessions on mathematical life outside academia. Anotner impediment to change is

the low achievement level in algebra which is currently being experienced. It is hard to

improve to a high level of performance, if not seemingly impossible, if one has to start

essentially from zero.

Some of the managers of technical workers have come to realize this in Illinois and

have adopted strategies to cope. Instead of expecting technical workers to accurately

perform routine ratio and proportion calculations, they provide such workers with premixed

or known amounts of materials and COLOR CODE them. The worker is not expected to be

colorblind. They are told to take the RED bottle and add its' contents to the YELLOW bottle

and pour the resulting solution into the BLUE container. How relevant do such people feel

algebra to be? If they do feel that algebra is important, they often cope by sending their

employees oack to the community colleges or, worse yet, they cope by developing their

own mathematics courses, entirely bypassing the educational system.

This is not an isolated phenomena. The widespread infusion of the microchip into

every and any device goes hand in hand with a consumerism which presents this

increasing automation and ease of use as highly desirable, if not necessary. Cars.

programmable VCRs. Photography: automatic exposure, automatic flash, just

point-and-shoot! Nobody has any need to carry out an actual calculation anymore!

Yet again another impediment is the perceived lack of utility of algebra. One of the

problems continually being faced in industry is the confrontation between people with a

classical, school mathematics understanding of mathematics and the role of algebra and

practical, real-life business problems. Oftentimes the assumptions upon which the algebraic

methods are based cannot be justified in practice, with the net result that abstract methods

such as algebra are not being considered even when they are applicable, relevant, and

useful.

This does not bode well for reforming the algebra curriculum because of widely held

beliefs that algebra has no real role to play in our society after secondary school. "When

was the last time you had to use the quadratic formula in everyday life?" is a question that

is oft repeated to justify the lack of utility of algebra. Even the microchips are not seen as

doing this kind of algebra for you.
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Fundamental Algebraic Concepts

What concepts in algebra help prepare students for entry into the technical work

force? A deeper and more comprehensive understanding of the basic concepts in algebra

would go a long way. For example, one of the situations which seems rather common is

failure to grasp the patterns in a situation. Each problem is seen as unique, needing to be

addressed with specific methods if at all. What is missing is the facility that algebra

provides, especially, for example, in 'story problems,' for providing abstract models of

problem structure and solution. The impact in business is, given such an abstract

understanding of a business process, the ability to create general purpose software tools

which solve families of problems. When this process does occur it is perceived as a very

powerful and effective one. When it does not, there is a tremendous lost opportunity cost

which is paid by business.

Fundamental Educational Issues

Sometimes the connections between algebraic problem solving techniques at the

primary and secondary school level are lost by students as they go through college,

possibly graduate school, especially by people with less, as opposed to more,

mathematics. !n 'story problems' the idea of 'symbols for unknown quantities is

introduced. One of the reasons is to provide a method, expressed in terms of the symbols,

which is easy to comprehend and use. Usually the 'quantities' are numerical. What

happens to many people in the technical work force is the loss of the idea of

'representation' and why it was (is, could be) so effective. Many a graduate level scientist

or statistician has failed to take advantage of the simplifications and power 'let x =

provides when complex (symbolic) quantities have to be manipulated. The advantage

apparently does not go away when mathematical technology is employed. On the contrary,

such technology becomes more effective the more its work is lessened through appropriate

use of algebraic concepts.

This fall off in retention of algebraic concepts as time goes by can be specifically

addressed in the K through graduate school mathematics curriculum by the use of 'strands'

of algebraic ideas to pull these ideas together and infuse them with relevance and life as

the student progresses through the curriculum, to the point that algebraic modes of

thought are seen as natural and intuitive.
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Instructional Input From the Technical Work Force

Students and faculty at all levels from K through graduate school should be exposed

to problems actually being faced by industry. This can be done through-a program of

student and faculty interns. In the schools, career counseling departments could be

charged with the mission to actively identify those employers in their area with

mathematical (algebraic) needs and facilitate the interaction between businesses and those

in the school responsible for curriculum development.

Mathematics depa 'ments could request businesses to supply speakers for talks to

students and faculty. If those talks were focused on algebra and the role that mathematical

sciences play in technology, such as computer algebra systems, then there could be an

infusion of algebraic methods actually, currently being practiced into the curriculum

development process. The real problem here is to take what is already happening locally on

a small scale in a sporadic way and incorporate it into the education& process of delivery

of algebraic ideas via systemic change.

Summary

How do algebra concepts prepare people for employment and lifelong learning in

mathematics? One invariant in modern life is the universal presence of change. In the 20th

century, technological change has been increasing in an exponential fashion, no where

more so than with technology for machine computation.

By providing the reform of curriculum in algebra with input on current and next

generation mathematical sciences technology, students would be better prepared to step

into an industrial problem solving environment with algebraic tools and, more importantly,

algebraic power which are both relevant and effective in terms of facing this anticipated

demand for continual personal growth and change.
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Some Thoughts on Algebra for the Evolving
Work Force

Thomas A. Romberg and Mary Spence
University of Wisconsin-Madison

Everything would be perfect if...algebra made sense.Amstel Beer TV
advertisement

In real life, I assure you, there is no such thing as algebra.Fran Lebowitz,
December 1, 1993, Wisconsin State Journal

These sentimentssuggesting that algebra does not make sense or is just

something one does in schoolwhich are so common in the public at large, are at the root

of the problem of providing an appropriate algebra curriculum for the evolving work force in

this country. In this paper, the roots and role of this perception are addressed first. This is

followed with a suggestion for a shift in emphasis in what and how algebra in school

mathematics might be taught. The paper concludes with a description of a set of units in

the middle school designed to teach algebra based on this shift. Our argument throughout

this paper is that all students, as members of tomorrow's work force, need to see algebra

as important and useful, and to regard it as making sense.

School Algebra

The Algebra for the Twenty-First Century Conference, in August 1992, summarized

the current view of school algebra as a collection of isolated topics along with a set of

prescribed skills that are quickly forgotten and with a limited view of variable and function.

This view is undoubtedly based on how algebra is organized and taught in schools. For

example, Weller (1991) described a typical algebra class. The first 5 to 10 minutes of each

class usually began with the correction of the previous day's work. The second segment of

the class, which lasted from 10 to 17 minutes, was devoted to the presentation of new

material. Example problems that had been placed on the chalkboard prior to the beginning

of school were used throughout the day. After each class period, the answers were erased

so that the problems would not have to be rewritten for the next class. The remaining third

of the class was study time, during which students were to work on the day's assignment,

which was always to be completed by the following day. During this study period, the
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teacher would either look at individual students' work and assist those who had questions

or would sit at her desk at the back of the room evaluating notebooks and/or calling

students to her desk to ask about late assignments.

Emphasis was placed upon determining the one correct answer, and the teacher

provided a step-by-step explanation of her thinking processes as exercises were computed.

Students who had skipped steps, but who arrived at the same answer as the teacher were

immediately corrected. Students were expected to use the prescribed computational

thinking process presented in the textbook. Practice problems were prototypes of those in

the assignment that students would be eventually completing. Students rarely raised

questions or sought explanations regarding computation.

The following student-teacher exchange illustrates the importance of following the

teacher's process. After taking a test, a student asked about the wording of one of the test

questions, which he had answered incorrectly. The teacher's reply was, "That's not the

way you should be thinking about it, if you are thinking right." Embarrassed by the

teacher's comment, the student looked down at his test. No further comment was made

by the student, nor was further explanation suggested by the teacher. After the teacher's

remark, all hands went down.

The teacher had transferred authority to an unnamed "they." The teacher was the

mediator between the source of knowledge and those who were expected to acquire the

prescribed information. The knowledge of the teacher was deliberately suppressed in favor

of that in the textbook. The study of algebraic content was justified on the ground that it

was necessary for college entrance. Transmission of abstract knowledge appeared to be

the primary focus of mathematics instruction. On several occasions, the teacher

acknowledged to students the fact that the information being presented would soon be

forgotten. The only justification for studying the material presented was, in fact, to pass

subsequent tests so that they might meet the requirements of college entrance

examinations. Thus, for both the teacher and the student, the purpose of the course was

not to learn the big ideas of algebra or provide students with employable skills. Its sole

purpose was access to further courses and to college.

The textbook was the primary factor in determining the curriculum. Algebra was

presented as a process of learning methods needed to solve standard problems. The

teacher relied on surface features of algebra and taught manipulation skills and the routine
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application of standard algorithmic techniques. This teacher's perspective of algebra fits

the dualistic conception of mathematics in that an external authority, in the form of the

textbook, was the source of truth, and algebra consisted of a collection of true

propositions apart from the context in which they were developed.

Wenger (1987) found that students could use the various techniques they had

studied but when problems were presented out of context and the students had to select,

as well as apply the methods of solving them, they had great difficulty. Students

sometimes perform the manipulations correctly, but they make "strategy errors," which are

poor choices of what to do next (Wenger 1987). This observation suggests that students'

difficulties result not so much from the content of their mathematical knowledge base, but

from its organization. The ways in which knowledge is organized, accessed, and used are

important determinants of intellectual performance. The packaging of subject matter into

single chunks in a one-rule-per-section format may leave students with the impression that

solutions should be straightforward, requiring only the use of one rule or procedure.

The following assumptions stem from Wenger's work (1987) with high school and

college students:

Students learned algebra primarily from examples and practice tasks

found in textbooks. They did not usually learn by understanding the

explanations of procedures and using toose explanations. Rothe', they

figured out what the procedures were about by working through

them.

An important force driving student behavior was the need to make

sense of things by creating simple, straightforward procedures that

work. As students worked problems, they invented rules for the

procedures that seemed to fit the expected answers. Often those

rules were as simple as possible and were incorrect.

The rules and procedures that students invented became part of their

problem-solving approach. Students often continued to use one of

these inferred procedures until encountering a task that revealed it to

be incorrect (p. 221).

An instructional consequence stemming from these assumptions is that if a list of textbook

tasks can be completed successfully with the right answers using a sequence of
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procedures inferred by the student, then the correctness or the validity of the strategy is

confirmed and the student believes he or she "understands" the algebraic topic.

The underlying basis for these descriptions of traditional instruction in algebra rest

with common beliefs about mathematics. Many nonmathematicians such as sociologists,

psychologists, school administrators, and even curriculum generalists see mathematics as a

static, bounded discipline. Indeed, according to Edward Barbeau (1989), "Most of the

population perceive mathematics as a fixed body of knowledge long set into final form. Its

subject matter is the manipulation of numbers and the proving of geometrical deductions.

It is a cold and austere discipline which provides no scope for judgment or creativity" (p.

1). These views reflect an absolutist perspective about mathematics and are undoubtedly a

reflection of the mathematics studied in school rather than an insight into the discipline

itself.

During the past two decades, there has been a growing awareness of the need to

represent better what mathematics is about, to illustrate what mathematicians do, and to

attempt to popularize the discipline, This is not easy because the subject has many facets.

One can define mathematics "as a language, as a particular kind of logical structure, as a

body of knowledge about numbers and space, as a series of methods for deriving

conclusions, as the essence of our knowledge of the physical world, or as an amusing

intellectual activity" (Kline 1962, p. 2). Understanding these variations is important

because different features have been emphasized in school mathematics programs at

different times and by different authors. Furthermore, proponents of the current reform

movement argue for a particular perspective that is different from that held by diverse

individuals, including the perspective of many (if not most) working mathematicians

(Wheeler 1991).

In summary, the roots for the current perspectives about algebra are from an

absolutist perspective about mathematics in general"a body of truth far removed from

the affairs and values of humanity" (Romberg 1992, p. 751). According to this view, to

know algebra is to master a large collection of concepts and procedures. In addition, there

is a second problem with this perspective in American schoolsthe idea that the

successful completion of algebra courses gains one access to the future (e.g., college

entrance, programs, jobs) (Secede, in press). Thus, by making the mastery of a collection

of poorly understood procedures the goal of such course taking, the courses function as
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filters for denying access to large numbers of students. The fact is that the mathematics

course, algebra, creates a major barrier to current reform efforts. Students often find

algebra one of the most alienating parts of their school curriculum. Based on whether they

are permitted to enter this course or on their experiences with it, they come to view

themselves as having little potential for further involvement with mathematics (Wisconsin

Center for Educational Research 1993).

A Shift in Emphasis

A growing number of philosophers of mathematics (e.g., Davis & Hersh 1981;

Kitcher 1988; Lakatos 1976; Tymoczko 1986) argue that mathematics is "fallible,

changing, and like any other body of knowledge, the product of human inventiveness"

(Ernest 1991, p. xi). Mathematics must be considered as a process of inquiry and coming

to know, a continually expanding field of human creation and invention, not a finished

product. Such a dynamic view of mathematics has powerful educational consequences.

The aims of teaching mathematics need to include the empowerment of learners to create

their own mathematical knowledge; mathematics can be reshaped, at least in school, to

give all groups more access to its concepts and to the wealth and power its knowledge

brings; and the social contexts of the uses and practices of mathematics can no longer be

legitimately pushed asidethe implicit values of mathematics need to be squarely faced.

When mathematics is seen in this way, it needs to be studied in living contexts that are

meaningful and relevant to the learners, including their languages, cultures, and everyday

lives, as well as their school-based experiences.

This philosophy of mathematics has been labeled by Ernest as "social

constructivism" which, he argues, is based on three premises:

The basis of mathematical knowledge is linguistic knowledge, conventions,

and rules, and language is a social construction.

Interpersonal social processes are required to turn an individual's subjective

mathematical knowledge, after publication, into accepted objective

mathematical knowledge.

Objectivity itself will be understood to be social. (p. 42)

In particular, from this perspective, views of the nature of algebra are changing.

An important factor underlying current changes in the view of the algebra curriculum is the

move from an emphasis on manipulative skills to an emphasis on conceptual understanding
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and problem solving. This is a move from doing algebra to using algebra. One reason for

this is the introduction into the classroom of increasingly more powerful calculators and

computers that are changing what students are able to do in this subject.

Attention needs to be given not only to what is being represented in terms of

underlying structures and relationships in problems (the semantic aspects of algebra) but

also to how these are represented (the syntactic aspects of algebra). An important feature

of algebraic thinking is the development of flexibility with regard to mode of representation.

Students need to be able to recognize different forms of representation, know what

advantages each has to offer, and be able to translate freely among them. Both the

involvement of technology, and research evidence as to the kinds of procedures that

students use naturally, point to a greater use of recursive techniques and a possible

abandoning of some of the deductive procedures that form a large part of the current

algebra curriculum (Booth 1989). The current increase in attention on graphing and

functions and the corresponding decrease in attention on factoring, powers, and roots are

continuations of a gradual process that has been developing for some time.

Shifting the emphases in school algebra raises some difficult epistemological and

philosophical questions. If it is a generalization of arithmetic, then its behavior is tied to the

properties of quantitative arithmetic. However, if it is a forerunner of abstract algebra, it is

better understood as being determined by a set of rules for the manipulation of the

symbols in the system in which it is written. School algebra originates in the boundary

between formalized arithmetical algebra and the development of arbitrary algebraic

systems. As a consequence, it presents learners with validation problems. Do you

determine the truth of an algebraic statement, or justify the steps of an algebraic

transformation by the appeal to the behavior of numbers, or according to a set of formal

rules? Wheeler (1989) suggests it is not surprising that so many high school students and

teachers are confused and uncertain about the reasons underlying the procedures in school

algebra (Wheeler 1989).

Mathematics' educators should be involved in exploration of existing school algebra

and serious examination of plausible alternatives. We need to know more about the role of

routines in algebra, whether the practice of routines should follow or accompany

conceptual understanding, what students need to know in order to manage and direct

algorithmic behavior, to what extent algebraic behavior can be deduced from arithmetic or
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from geometry, how to abstract patterns, how to generalize and how to justify

generalizations, and how to apply algebra to problem situations.

"The winds of change are whipping around the algebra curriculum for a

variety of reasons. Some concerns are generated by research findings about

what people do and do not learn well. A curriculum that has been with us for

quite some time is in a state of flux and under close examination."

(Ed Silver, quoted in Wenger 1987, p. 244)

Kaput (e-mail, April 6, 1993) identifies the following as contexts within which

algebra reform is situated:

Understanding the nature of the domain of algebra;

Understanding algebraic reasoning and how it is different from other

forms of reasoning;

Understanding how algebra is best learned, by whom, with what tools and

resources, and at what developmental levels; and

Understanding what kinds of classrooms foster understanding and

competence, what are teacher-preparation implications, and how to

bridge the gap between middle school and high school.

The NCTM Standards (1989) emphasize the importance of models, data, graphs,

and other mathematical representations to facilitate the learning of concepts and structure

in algebra. Students should understand the concepts of variable, expression, and equation,

and should explore the interrelationships between number patterns and tables, graphs,

verbal rules, and equations. They should informally investigate inequalities and nonlinear

equations and develop confidence in solving linear equations by both formal and informal

methods. They should be able to use algebraic methods to solve a variety of real-world and

mathematical problems. The goals articulated in the Standards stress two aspects of

algebra: algebra as a language or structure and the concept of function.

Kaput (cited in Wenger 1987) argues that it is a serious error to treat algebra as if it

were a self-contained domain. The basic problem with learning algebra is that it is a

language without much semantic content. The semantic content that it does have has

developed among experts through their manipulation of sophisticated algebraic expressions

over long periods of time. Therefore, much of its substantive structure has a sort of

invented semantic content. In Kaput's view, the primary source of meaning for algebraic
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expressions is in their capturing of numerical patterns from arithmetic, from science, or

from anywhere you find them.

For students, algebra should be a way to express real-world phenomena in

mathematical language. Their experience of algebra should include many and varied

problems from the real world so they will gain understanding of the power and usefulness

of algebraic notations and conventions. Algebra should be an extension of the study of

patterns, functions, and ratios. There should be an emphasis on understanding concepts in

realistic contexts as opposed to manipulating symbols and memorizing procedures void of

any meaning. Students should develop an understanding of variables, expression,

equations, and properties through the use of tables, graphs, and physical models.

Manipulating expressions can be introduced as the need arises in problem contexts.

Although by the end of eighth grade, students should be able to formally solve linear

equations, they should have arrived at this method only after using concrete and informal

techniques. In addition, they should have had a wide range of experiences with inequalities

and nonlinear equations.

Algebra in a New Curriculum

The following example comes from Mathematics in Context (Romberg et al., in

press), a middle school curriculum project funded by the National Science Foundation and

being developed jointly by the National Center for Research in Mathematical Sciences

Education at the University of Wisconsin-Madison and the Freudenthal Institute at the

University of Utrecht.

The belief underlying the Mathematics in Context curriculum is that mathematics is

a process of inquiry and coming to know that includes creating and inventing. In

presenting mathematics as a human activity, the concept of "meaning" is central.

Especially important is the question of how to involve students so that problems will have

a sense of reality for them. In what Treffers (1987) calls a "domain theory of realistic

mathematics education," realistic refers to reality in the sense of what is real for students.

This does not necessarily imply real life situations, but may also include fantasy and

mathematical objects. Thus, mathematics is viewed as a human activity that starts in a

reality that makes sense to students.

The idea of "mathematizing" (Freudenthal 1983) is central to this view of

mathematics education. According to Freudenthal, mathematizing is the process by which
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mathematicians streamline or simplify reality to meet their needs and preferences.

Mathematizing involves representing relationships within a complex situation in such a way

as to make it possible to put them into a quantitative relationship with each other. The

mathematician must first decide which variables and relationships between variables are

important and which do not matter when confronting a complex problem situation. Then,

a mathematical model is made, numbers reassigned to variables, and numerical procedures

used to make predictions. Finally, the results are examined. Mathematizing is an organizing

activity. It includes mathematical content, expression, and more intuitive lived experience,

expressed in everyday language. Mathematics is seen as a process, as a "doing" discipline,

as a practical skill that involves both art and techniques.

Algebra in Mathematics in Context (Romberg et al., in press) as diagrammed in

figure 1 reflects three important ideas: regularity, restriction, and process. The titles of the

algebra units are placed in the diagram according to which of these ideas they are designed

to develop.

Figure 1Logic of the algebra strand (Roodhardt as cited in Romberg et al., in press)
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Regularity or pattern involves looking at and expressing relations among two or

more quantities. This is a representation of quantitative information, and then, reasoning

about this information. Key mathematical ideas required to reason about regularities are the

core concepts of beginning algebra: variables, functions, relations, equations, and

inequalities. This involves the mathematical process of generalizing or of expressing

generality. Patterns and regularity are part of the process of generalizing. Generalizing is

characterized by looking for similarities, analogies, and classifying.

Restrictions involve restrictions on the domain of a function and comparisons that

function as constraints on equations and inequalities. It involves maximizing and minimizing

a quantity while at the same time making sure that constraints on other quantities are

satisfied. Limiting interpretations and determining validity are part of this theme. Equations

describe the constraints between quantities in situations.

The traditional approach to the mathematics of process or change is calculus. The

changing system is modeled by a special equation that describes the relations between the

rates of change of different variables. Process includes this, but it also deals with

recognizing, describing, and using functional relationships; with recognizing variation in

situations. Commonly occurring types of variation in relationships between variables

including linear, reciprocal, exponential, and quadratic are explored and related to graphical,

symbolic, and numeric representations of these types of relationships.

The belief underlying the algebra strand in Mathematics in Context, then, is that

algebra is a tool for making sense of the worldfor making predictions and for making

inferences about things that you cannot measure or count. Algebra is manipulation with

substitutes temporally free from the original meanings, but whose meanings are

recoverable, whenever necessary. The substitutes are the symbols Among them are

symbols for number, variable, actions, and relations.

Figure 2 depicts the process of building meaning for working with symbols. The

symbolization cycle is one of the important ideas in algebra and in topics that use algebra.

The chosen world can be part of reality, but it can also be fantasy or a mathematical

abstraction. The emphasis placed on the process is in order to prevent early automization

as a substitute for student reasoning. The thoughtful use of an algorithm for special

purposes without memorizing the algorithm is an important and essential step toward

learning formal algebraic operations.
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Figure 2Symbolization cycle (Roodhardt as cited in Romberg et al., in press)

CHOSEN WORLD

SYMBOI_IZAT1ON

REPRESENTATION IN
SYMBOLIC LANGUAGE

MANIPULATION OF
THE SYMBOL STRINGS

FMEANINGFUL RESULTS I

INTERPRETATION

Lins (1990) states that the belief that algebraic thinking can only happen in the

context of algebraic symbolism is misleading. He distinguishes between two fields of

reference: the numerical and the analogical. The numerical frame of reference means that

only the ariThmetical environment is relevant to the process of manipulating or exploring a

situation. The analogical frame of reference means that a situation is manipulated or

explored by manipulating features of the situation itself. An example of an analogical frame

of reference is when a situation or algebraic problem is modeled with a geometrical shape

or pattern such as an array of dots.

This analogical frame of reference has been called referential algebra. Referential

algebra as described by Kaput (e-mail, April 6, 1993) is the algebra of quantitative

modeling; of functions and relations that refer to elements and relations in realistic

situations. As a conceptual structure, it has its foundation in knowledge of quantification

and quantities. Formal algebra is the algebra of symbolic systems, of formal elements,

whose foundation may be in quantitative activity and situations, but where attention is or.

the form of the representation itself, not on what it might be representing.

Kaput uses the metaphor of a person looking through a lens at a shape to

distinguish formal algebra from referential algebra. Think of a person looking through a tall

vertical lens to an amorphous, vertically elongated blob with Aristotelian sight-lines passing

through configurations on the lens to configurations of the blob. The lens stands for a

symbol system, and the blob stands for a situation or referent. Symbols can be used

transparently to reason about the situation by using knowledge of the situation. However,
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you can also think of the sight-lines being generated and wiggled by their ends in the blob,

with the intersections on the lens being derivative of the reasoning that is tied to the blob.

Here, there is a semantically guided two-way interaction between symbols and situation.

The main source of guidance and inference again is in your knowledge of the situation. On

the other hand, you could truncate the sight-lines at the lens and do syntactically guided

maneuvers of the symbol system, treating the lens as opaque. This truncated activity is

analogous to formal algebraic reasoning. Mason (1992) refers to the most productive

reasoning as "shifts of attention" between the symbolic lens and the situation. The

wiggling of the sight-lines is controiled sometimes by the configuration of the lens,

sometimes by those in the situation-blob, and sometimes by the comparative shifting

between the two. Supports or constraints for your reasoning come from the symbol

system, from the field of reference, or from an interaction between the two (Kaput, e-mail,

April 6, 1993).

According to Kaput, the standard, rules-based algebraic symbolic lens has its

syntactic properties inherited from the quantitative properties of the standard number

system. Configurations on a character-string lens are constructed by acts of abstraction or

generalization, or both, from action on the reference field of numbers. This is algebra as

generalized arithmetic. It is a limited form of algebra, and it is not very helpful as a

resource for reasoning, especially about general quantitative relationships (Lee & Wheeler,

1989). One of the strengths of a referential, or modeling, approach is that it helps to

remove the ambiguity in the two levels of structure between that of objects such as

functions and operations on them. You can concentrate first on building functions as

expressions of quantitative patterns before going on to manipulate them for purpose of

comparison or combination (Kaput, e-mail, April 6, 1993).

To illustrate this approach, "Patterns and Triangles" is a unit in the algebra strand in

Mathematics in Context that is concerned with regularity. This is algebra of quantitative

modeling or referential algebra. Referential algebra contains models, descriptions, concepts,

procedures, and strategies that refer to concrete or archetypical situations. Models and

strategies refer to the situation in problems.

The algebra in this unit is classified in a typical algebra textbook under the topic of

sequence and series. The way that the algebra is presented here, however, is not as it is

usually introduced in beginning algebra textbooks. This algebra fits the description of
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referential algebra. The big idea underlying the unit is regularity. A situation is manipulated

or explored by manipulating features of the situation itself. Attention is on the forms of

representation and on what is being represented. The focus of the unit is on the

representation of algebraic expressions and functions, including symbolic, numeric, and

graphical representations.

Regularity is situated in the context of patterns and geometrical shapes and in

-sequences of numbers. Pattern is a metaphor that is used for regularity in numbers.

Special attention is paid to triangular numbers as regularity becomes situated in triangular

numbers. Mathematical content includes establishing patterns in data, creating both linear

and quadratic formulas, dynamics in patterns, functions, and series and sequences.

Through recursive techniques, the use of tables, and visually by tessellating black

and white tiles in equilateral triangles, students discover that the sum of the odd integers,

(2k-1) = 1 + 3 + 5 + ...+ (2n-1) = n2; "n" is a row number in the referent triangle.

Triangles become symbolic shapes with the same pattern. Students learn that if they

square the row number "n" of the triangle, they will get the total number of black and

white tiles. This formula is written as S, = n2 for the sum of the total number of tiles.

Students also build an understanding of the sum of integers, k = 1 + 2 + 3 +

...+ n = n(n -1)/2 from exploring patterns of black and white tiles. The formulas S b =

1/2n" + 112n and S, = 112n2 - 112n are derived visually. 5, stands for the sum of the

black tiles, and Sy, stands for the sum of the white tiles. The referent or situation

(elongated blob) for the symbolic expression in the unit is a particular grouping and splitting

of a rhorntus (diamond).
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Figure 3 Referent for formulas in "Patterns and Triangles" (Romberg et al., in press)
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Students are able to use this referent throughout the rest of the unit to give

meaning to formulas used to solve a variety of problems. Here the representation becomes

an object of study itself. It is a source of new abstractions that verve as useful models of

patterns in concrete situations (Fey 1990).

Conclusion

An important reason that so many students and teachers have difficulty with this

subject is the approach taken to the subject. As it is currently organized and taught,

school algebra is a barrier that many people are not able to overcome. Therefore, a critical

examination of the content, place, and purpose of school algebra is long overdue. The

shift in emphasis and the approach we have proposed here should provide all students with

a better understanding of the important and useful mathematical ideas of algebra. Thus, it

should provide the mathematical foundation for the work force of tomorrow.
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Algebra: A Vision for the Future

Susan S. Wood
J. Sargeant Reynolds Community College

As currently taught, algebra can be characterized as a certain body of mathematics,

largely skill-based, with which students must be moderately successful to move on to

mathematical or other endeavors. The algebra taught in middle and secondary schools and

in developmental programs at many community colleges is largely a set of skills.

Frequently, algebra courses are organized around sets of skills clustered by topic, such as

factoring, linear equations, polynomials, rational expressions, and radicals. These skills are

learned temporarily and hence are forgoten easily because they are taught as an end in

themselves. Such skills must be relearned when needed in higher level mathematics

courses such as precalculus, calculus, or discrete mathematics or for applications such as

chemistry, physics, or economics.

I propose instead that algebra be taught as a way of thinking, a conceptual and

symbolic framework which supports exploratory thinking in mathematics. A student

challenged with an interesting and relevant problem situation analyzes it initially using

mathematics within his or her current knowledge base. Appropriate algebra, that which will

enhance the understanding, exploration, and solution of the problem, is introduced at the

point of need to enable deeper analysis. Symbolic manipulation such as simplifying

expressions, laws of exponents, factoring, and the like, should be taught only as necessary

and when fitting the context of the interesting problem setting. Skills will be remembered

as they are connected to the context in which they are learned. The algebra underpinning

provides the vehicle to move a problem solth:on to deeper levels and better results.

The traditional secondary school or lower division collegiate algebra classroom of

the present, with an omniscient lecturer at the helm and too many unsuccessful students,

shows few similarities to a new vision for the study of algebra. First, no separate algebra

course will be offered. Rather, algebra will be integrated into a context-based

"mathematicsplus" course where algebra is presented as an underpinning to an

applications-driven mathematics curriculum. The teacher will become facilitator and guide,

directing the students as they together explore, conjecture, hypothesize, react, test, and
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conclude. Students will learn actively in collaborative settings, with continual development

of each student's ability to plan, organize, speak, listen, and write. The curriculum must be

responsive to the ever-changing needs of the workplace, to new information about the

learning and teaching process, to new technologies, and to the community the educational

system serves. The natural institution to handle the teaching of algebra to prepare for an

ever-changing technical work force is the 2-year college, with its diversity of programs and

strong connections to business and industry. Assessment, conducted by students

themselves as well as educators, is ongoing and monitors student learning, the relevance

of the curriculum, and the quality of pedagogy.

The teaching of algebra should focus on several major ideas, among them equation-

solving (in an appropriate context). Equation-solving is a common thread running through

our skill-based courses as an end in itself, but can truly illustrate the power of mathematics

to find answers to meaningful questions. One or more equations containing one or more

variables resulting from data analysis or some other situation creates a challenge for the

solver. Technology support and pencil-and-paper techniques enable varied means of finding

exact or approximate solutions including numeric, graphical, and symbolic methods.

Another important concept which should remain in a renewed algebra curriculum is the

concept of function. Important function ideas include the study of relationships between

and among variables, the study of the effects of varying parameters on families of

functions, and the use of functions to enable students to observe patterns and model

physical phenomena.

The SCANS Report, Learning a Living, calls for full implementation of the teaching

of "workplace know-how" from kindergarten through college by the year 2000. This know-

how encompasses such skills as the ability to learn, reason, think creatively, make

decisions, and solve problems. Competencies such as collecting, interpreting, and

evaluating data, using appropriate technology, and working effectively in a team are

included. The algebra curriculum can be a strong advocate for encouraging SCANS know-

how and a powerful mechanism for its teaching. Various initiatives such as Tech Prep,

JTPA, and Perkins programs enable the tailoring and coordination of educational programs

to meet the needs of the workplace.

Changing the nation's understanding of the role of algebra in its educational

programs will not be easy. As the NCTM Standards have influenced widely courses and
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curricula, so must the larger educational community understand a redefinition of what it

means to study algebra. Educators, administrators, parents, students, and citizens must be

convinced that the certification formerly offered by completing an algebra course is being

replaced by increased access to a strong, sound curriculum producing successful students.

Concerns about teacher retraining and professional development will attempt to roadblock

reform in the algebra curriculum. The development and dissemination of high-quality

instructional materials which model effective curriculum and pedagogy are critical to

assisting schools and colleges in their efforts to make changes. Many other issues, equity

and diversity among them, surround appropriate algebra for the 21st century. Essential is

the elimination of courses in algebra as screening devices for students wishing to pursue a

variety of fields or other mathematics-related topics such as statistics. Retention of

students from underrepresented groups and students with varying learning styles is a

must.

A new draft document, the "Curriculum and Pedagogy Reform for Two-year College

and Lower Division Mathematics Standards," under preparation by the American

Mathematical Association of Two-Year Colleges, calls for the natural and routine

incorporation of technology into the learning and teaching of mathematics. In mathematics

in general and algebra in particular, students should be able to choose the appropriate

technology, use it with confidence, and understand the nature of the results obtained.

However, this same wording summarizes my thoughts about the direction which algebra

should take: ALGEBRA, with a revitalized definition, should be incorporated naturally and

routinely into the student's mathematics experience, seamlessly integrated and connected

with other mathematics and mathematics-related topics which are learned in context

through an active, collaborative approach.
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Report of Working Group 4

Joseph Gallian
University of Minnesota at Duluth

Although many issues were discussed, our group came to conclusions on only a

handful of them.

Algebra Across the Grades

There should be more dialog between K-12 educators and 13-16 educators. We

discussed several benefits from such a dialog:

It might be possible to lay the basis in high school for some important ideas

from linear and abstract algebra. These ideas, including various uses of

proof and explanation, reasoning about binary operations, and working with

symbol systems, are important in the algebra experience of all students, not

just those who are college bound. With college-bound students, it might

even be possible to introduce some of the actual topics from advanced

algebra (especially from linear algebra).

New ways must be found to connect with and engage students in linear and

abstract algebra courses. The algebra experiences of university students

should build on and be informed by the various reforms and changes that are

taking place at the secondary level. These include mixing deduction with

experiment, using cooperative teams of learners, developing project-based

activities, and incorporating technology into courses.

Part of the dialog between K-12 and 13-16 educators might be a search for

algebraic themes that could run throughout a student's algebra experience.

Technology in College Courses

Educators ought to consider the use of technology in linear and abstract algebra

courses. We discussed several issues that must be addressed in order to make this

happen. Two important ones are:

Faculty need to devise effective uses for technology in their courses. There

are computational environments that seem well suited for use in linear and

abstract algebra (MATLAB, ISETL, and systems like Geometer's Sketchpad,
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Maple, and Mathematica, for example). There is also a great deal that is

known about the uses of technology for learning mathematics at the

pre-college level, and some of this can be transported to the university

setting. But there are challenges in teaching linear and abstract algebra with

technology, challenges that ca:i for new ideas and solutions. Innovative work

is going on at some colleges and universities, but significant research is

needed to find effective ways to use technology to help students learn

algebra.

If technology is used in a course it ought to be integrated rather than

appended. Integration of technology into algebra requires a significant

re-thinking of the algebra curriculum. Different uses of technology will lead to

different kinds of curricula. For example, a linear algebra course that uses

MATLAB to explore applications of matrix algebra to topics in engineering is

likely to be quite different than a course that asks students to use, say,

Maple to write programs that test vectors for linear independence.

The Role of Applications

It is preferable to integrate applications into a course rather than offer separate

applied courses. Applications in elementary courses should not be so over-powering as to

detract from the mathematics. Applications can be used for motivation or to enhance

understanding. The applications can be from practical situations or to other parts of

mathematics.

Abstraction and Proof
For many students there is a barrier between the courses that stress mechanical

skills and the courses that emphasize abstraction and proof.

What can we do to remove this barrier? Several strategies were discussed:

Abstractions should come only after concrete examples have been

introduced. Some of these examples might come from previous courses and

experiences; others might be developed within the linear or abstract algebra

course itself. In order for students to see the utility of abstraction in algebra,

they need to have a concrete basis from which abstractions can be made.
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Linear algebra is a good course for developing some proof techniques. Most

proof:, of results in elementary linear algebra are transparent and constructive

enough so that students can build several important skills.

Students should use proof as a research technique throughout their

mathematics experiences. The de-emphasis on two-column proof in

geometry and the reduced emphasis of proof in calculus and other

elementary courses should not signal a completely proof-free experience for

students before they get to linear algebra. Activities should be developed in

lower level courses that illustrate the value of proof as a mechanism for

communicating, establishing, and even discovering new results.
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Some Thoughts on Teaching
Undergraduate Algebra

William D. Blair
Northern Illinois University

Abstract Algebra and Introductory Analysis are usually the first undergraduate

courses where students must come to grips with the idea of proof. The students may have

some familiarity with the abstract concepts of vector space and linear transformation, and

they may have had to write out a few short proofs, but they are not usually prepared for

the depth of these courses, where almost everything is proved carefully, and where the

students are expected to devise their own proofs. In the abstract algebra course the

students are not only [earning the subject matter but also the whole culture of pure

mathematics. Not only must the students understand the definitions and theorems, they

must learn to construct their own examples and counterexamples. There was considerable

discussion at the Colloquium about the "wall" students encounter when they face the

transition from the lower division courses to the abstract upper division courses.

Learning and teaching abstract algebra is labor intensive. There is no way around

this. The only way the students will learn to write proofs is by trying to do so. The

students' attempts must be read carefully, critiqued, and then returned along with helpful

comments and suggestions. As anyone who has graded student exercises knows, this is

the course of the long, wrong argument. Whenever I teach this course I assign quite a few

exercises every week, grade them, and return them, usually at the next class meeting.

The exercise grade is a significant part of the final course grade. The students are

encouraged to work together in groups, but this is not always feasible for some students.

I suggest that they think about the exercises before meeting with their group, and I require

them to write up their own solutions rather than appointing a scribe for the group and

having everyone else copy the scribe's work. One thing that I have found to be a good

investment of time is allowing the students to rewrite their first few exercise sets after

they get their papers back with my comments. By doing this a student can recover up to

one half of the points lost on the first try. This successive approximation method seen's to

help students improve faster than any other technique I've tried. Once students begin to
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understand what constitutes proof, the papers become much easier to read. This method

requires that the comments on the students' papers be extensive. Another advantage

gained from having assigned lots of work at the beginning of the term is that students tend

to allocate the same time intervals each week for studying each of their courses. Staking

an early claim to a major part of the students' study time allots to the algebra course the

time it deserves and needs. Even if you are fortunate enough to have a paper grader

assigned to your course I would encourage you to grade some of the students' work

yourself it's a great eye-opener.

Applications and historical comments are often suggested as important for

motivation. It has been my experience that students almost always enjoy historical or

biographical comments. Recently, there has been a tendency to yield to demands of

"relevancy," and to include applications in the course. It is my feeling that such inclusions

often tend to be superficial. In order to make room for the inclusion of applications, some

important mathematical concepts have to be sacrificed. It is clear that one must have

substantial experience with abstract algebra before any genuine applications can be

treated. For this reason, I feel that the most honest introduction concentrates on the

algebra. I prefer to motivate the subject with concrete problems from areas of mathematics

that the students have previously encountered, namely, the integers and polynomials over

the real numbers. Geometric considerations, such as symmetry groups and the

impossibility of trisecting the angle or duplicating the cube with straightedge and compass,

offer real motivation. In the end, the ideas of abstract algebra are beautiful in their own

right, and once the students begin to have success in the course, the subject's intrinsic

attractiveness is more than ample motivation. The trick is to supply the help necessary for

the student to experience some success early on. It is hard work for the student and the

teacher, but it is worth the effort.

A technique, with which one of my colleagues has had success, is to give a five-

minute quiz at the end of every class. The quiz always consists of a question on that day's

material, usually an easy question, and a second part in which the student asks the

instructor a question. After an initial shakedown period during which the class learns that

questions of the sort "will this be on the test?" are not what the exercise is all about,

these student questions become an assessment device by which the instructor learns

about the class's progress and is able to make daily adjustments as needed.
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Finally, I would like to mention an idea that I believe is worth trying. In addition to

the regular three credit-hour per semester abstract algebra course, I would like to see some

optional one credit-hour modules or seminary developed. These optional classes could be

taken concurrently with the algebra course. One such module might be devoted to

applications and would be an opportunity to delve deeply into several applications. This

module would make the most sense in the second semester. During the first semester,

there might be a module which deals with elementary logic and proof techniques. Another

module might be developed which uses Maple or some similar computational package.

Professor H. Montgomery has, I believe, had considerable success along these lines with

the undergraduate number theory course at the University of Michigan.
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Toward One Meaning for Algebra

Al Cuoco
Educational Development Center

Introduction

There are currently two meanings attached to algebra in American education. There

is the algebra that students take in middle and high school (many students, it seems, are

taking it in college as well), and there is the algebra in courses with titles like "abstract

algebra." Most people see absolutely no connection between the two algebras; school

algebra and abstract algebra are simply different subjects with the same name. One

reasonable response to this last comment is "so what?" It may be silly to use the same

name for two different mathematics courses, but does it really cause any harm?

I think it does. The lack of communication between algebraists and the people who

teach algebra in school has had several bad consequences:

School algebra has become very strange creathre over the last two

decades, and it is now a course with very little algebraic content. To

oversimplify, algebra in school has become a mix of drill in meaningless

manipulations of polynomials and rational expressions together with a

collection of topics that most algebraists would not recognize. For example,

students spend a great deal of time converting among the "point-slope,"

"two-point," "linear," "slope-intercept," and "y =mx + b" forms for the

equation of a line (some of these maybe the sameI'm never sure). The

courses hardly ever distinguish between polynomials and polynomial

functions, so that statements like lx-11(x + 1) = x2-1 have at least two

distinct meanings. And students spend a great deal of time in algebra

developing something called "function sense." This isn't a well-defined idea,

and it has very little to do with functions (and almost nothing to do with

algebra), but it seems to center around the ability to predict the change that

will occur in the graph of a polynomial function when one of its coefficients

changes. Like a culture cut off from the outside world, school algebra has
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evolved an entity and an aesthetic of its own, quite remote from its roots.

Stude- , manage to survive in mathematics long enough to get to

abstract algebra have no experiential bases from which they can abstract

notions about algebraic structures. So, they think of the course as something

that is closer to botany than to mathematics. It all seems like a game in

classification; there are groups, rings, and fields, each having its own

collection of sub-species, and the objects of the game are to be able to

define each of the sub-species and to be able to derive simple consequences

from these definitions. Even among the students who eijoy abstract algebra,

many see it as an intellectual exercise, having little to do with real

mathematics (like differential equations) and almost nothing to do with that

"other algebra" they learned in high school. For too many students, abstract

algebra seems like so much abstract nonsense, and the immense utility of

the structural approach to algebra never surfaces.

Imagine the schizophrenia that must be experienced by people studying to be

high school mathematics teachers. They know that they'll be expected to

teach the y = mx + b algebra after graduation, but, as preparation for this

task, they are given the group-ring-field algebra. In conversations over the

last two decades with my colleagues who teach high school mathematics,

I've found that many practicing teachers who took abstract algebra in college

will tell you that they never had an algebra course beyond what they studied

in high school; when reminded of their abstract algebra course, the common

response is that it was a complete waste of time.

It doesn't have to be this way, because it hasn't always been this way. School

algebra in the early part of this century was a recognizable preparation for and precursor to

university algebra. There were wonderful books (like Hall and Knight's classic Higher

Algebra) that connected techniques for solving linear and quadratic equations to more

subtle topics from the theory of equations. This study was then continued in college,

leading up to some elementary Galois theory (that's where group theory usually first

appeared). But as research in algebra became more abstract, and as algebra broadened to

include more than the theory of equations, the thread was broken, and algebra during and

after high school went their separate ways.
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It would be a good idea, then, to put some effort into solving the dilemma of the

two algebras, looking for ways to connect pre-college algebra with algebra as it is used by

mathematicians, scientists, and engineers. This isn't a call for teaching group theory in

middle school, nor is it asking that the content of abstract algebra be watered down. It is

simply a plea that we do some hard thinking about linking the algebra experiences of

students at all levels. This would add some much-needed substance to school algebra, and

it would provide a context from which abstractions could emerge as useful constructions

for high school graduates who plan to make, use, and teach mathematics. Put another

way, I'd like to see each working group think about the whole picture and to look for

algebraic threads that can be pulled from kindergarten through graduate school.

Some of these threads might not be about specific content at all; in EDC's

Connected Geometry curriculum development project, we're trying to build activities that

will help students develop what we're calling mathematical "habits of mind." Examples

include using proof as a research technique and using proportional reasoning. It should

certainly be possible to identify some algebraic habits of mind, like looking for algorithms in

repeated calculations, developing and using algebraic notation, and looking for structural

similarities in sets equipped with binary operations. Perhaps we might spend some time at

the meeting identifying a small set of such habits, thinking about how students might

develop them over their entire education.

Other threads might be more closely tied to specific content, to topics that already

are for could be) in the curriculum. In the rest of this paper, I'll describe one such thread

that could begin very early in school and be woven throughout a student's algebra

experience, right through college.

Algebra as a Theory of Calculation

Most algebraists enjoy a good calculation. The calculation can be in any kind of

system; algebraists calculate with numbers, polynomials, functions, permutations, sets,

propositions, even calculations themselves. Sometimes the calculation can just be for fun,

as in the famous

1 1 1 1

X2 ± x2 yzy2
1 1 1 1

y

8
(x±y

y x + y) y2 x2 )
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but most times calculations are carried out and analyzed for a purpose. Looking into the

properties of calculations could be a central thread in algebra. Initially, this might mean

carefully analyzing calculations to see what information they give you or how they can be

generalized. As students gain more experience with analyzing calculations, they can be on

the lookout for systems that "calculate the same," and that can lead to the notion of

algebraic structure.

Thinking about calculations, designing efficient algorithms for performing

calculations, and predicting the outcomes of calculations without performing them are all

important facets of algebraic thinking that find utility in a variety of contexts, some of

which seem quite remote from mathematics. Users of spreadsheets in business worry

about calculations all the time (the reference manual for Excel-, for example,

shows how a culture, somewhat disjoint from mathematics, has developed its own

vocabulary and metaphors for supporting thought experiments about calculations). The

symbol manipulation used by people who process text would be quite familiar to

algebraists (think about what you do when you get an e-mail that has paragraph returns at

the end of each line and you want to get rid of these but keep the double returns that

separate paragraphs).

Technology can help support students at every stage of their investigations into

calculations. Computers can be tools for investigating algebra in several ways:

Computers give students the expressive power needed to describe the

essential features of calculations.

Computers provide studehts with environments in which they can build

mechanical (computational) models of algebraic structures.

Students can experiment with their models, studying their behavior and

making conjectures about what they observe.

When students construct the models for themseives, they have a basis from

which they might establish their conjectures; logical connections among the

properties of the algebraic calculations or structures are often mirrored in the

ways that the computational models are built.

Maybe a concrete example would help make these points clear. The next section

outlines an investigation using Mathematica that gets at the arithmetic similarities between

Z and F[xl where F = Q or FL It could be started in high school (maybe earlier), but it also
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leads one to develop some ideas in abstract algebra that are important to the charge for

Working Group 4. A more detailed account of how this material was used with a group of

high school teachers is available as a preprint (Cuo 1992).

An Example: Arithmetic to Algebra

Start with an analysis of Euclid's algorithm for finding the greatest common divisor

for two integers:

14

1

1

3

3

216) 3162

3024 1

138 j 216

138

78 ) 138

78

60) 78

60

18 )60
54

6 ) 18

18

0

This works because remainders are smaller than divisors and because the gcd function has

two properties:

Euclid's Theorem. If a and b are integers

gcd [OD] = gcd (modtb,al,a)

if a x0,
gcd(0,b] = b
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Mathematica allows you to abstract off the essential features of a calculation and to

express them as functional equations; the following two lines build a Mathematica mcdel

for gcd:

gcd[a,b] := gcd(mod(b,a),a1

gcd[0,b_] := b

This process of "nailing down" a function that captures a process by constraining it

with functional equations is already a powerful technique for abstraction. It takes a major

cognitive step to be able to think about describing processes with functional equations, but

my experience is that many high school students can do it.

Analyzing the calculation described by Euclid's algorithm shows that the gcd of two

integers is a linear combination of them. Indeed, the divisor-remainder pairs in our example

are:

(216,31621 (138,216) (78,138) (60,781-'1 (18,60) (6,18) (0,61

which all look like this:

(a,b) (mod(b,a),a)

These all nave the same gcd, say d, and a little experimenting and calculating shows that if

d is a combination of any pair in the stream, it is also a combination of the pair that points

to it. The essence of this calculation is that if fcoeff and scoeff are modeled in like this:

fcoeff[0,b]:= 0
scoeff[0,bi = 1

fcoeffia,b1 := scoeff[mod[b,a],a] - quottla,ar fcoeffErnocifb,aLal

scoeff(a, b_l := fcoeff[mod[b,al,a]

(the first equation is somewhat arbitrary), then

gcd(a,b) = a fcoeff(a,b) + b scoeff(a,b)

This construction has several benefits. For example, on a concrete level, it allows students

to classify all the functions that behave like fcoeff and scoeff (this amounts to changing

the initial condition for fcoeff), and on an abstract level, it provides a computational proof

that Z is a PID.

Students can then use these basic functions to construct models for quotient rings

of Z. One way to do this is to represent a congruence class as a pair whose first element

is a distinguished representative of the class (say, the least positive residue) and whose

second element is the modulus. The constructors and selectors look like this:
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class[a_,m_] : = {mod[a,m],m}

rep := First

modulus := Last

and the operations on the classes can be modeled in a way that is quite close to the

mathematics:

add[c_,d_] := class [rep [c] + rep [d], modulus[c]]

mult[c,d] := class [rep [c] * rep [d], modulus[c]]

Here's an example of how one can use this package as a Z/mZ calculator:

In [11:= class [51,7] = = class [16,7]; Out [1]= True

In [21: add [class [5,7]], class [8,7]1;Out [21= {6, 7}

In [3]:= mult [class [4,101, class [3,10]]; Out [3]= {2, 10}

In [4]:= mult [class [4,10], class [15,10]]; Out [4]= {0, 10}

From here, students can look into the structure of Z/mZ, asking, for example, when

every non-zero element is a unit. Standard arguments show that the multiplicative inverse

of unit in Z/mZ can be calculated as the first coefficient needed to write 1 as a

combination of the unit and m:

recip[c_] := class( fcoeff[ rep[c],modulus[c] tmodulus[c]

For example,

In [1]:= recip I class [15,71] 1; Out [1]= {19,71}

In [2]:= mult [class [15,71], class [19,71 ] ]; Out [2]= {1,71}

An interesting investigation is to explain the behavior of recip when it is given a non-unit in

Z/mZ.

What students have here is a small number theory laboratory: they have

Mathematica models for some basic functions in arithmetic and a working model for Z/mZ.

They can use this laboratory tip investigate topics in arithmetic, building, for example, a

function that solves simultaneous linear congruences (and hence providing a computational

proof of the Chinese remainder theorem). But the real payoff is that (with minor

modifications) this same laboratory can be used to investigate other algebraic structures.
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For example, one can calculate the greatest common divisor of two polynomials (In one

variable x over, say, Q) by Euclid's algorithm:

3

)2x2 x 1 6/2 + x 1

6x2 3x 3
2 2

4x +2 )2 2x2 X 1

2x2 x 1

0

and, as before, the greatest common divisor of two polynomials is a linear combination of

the two polynomials. This process can be captured by the same Mathematica models:

gcd[a_,b_] := gcdI mod[b,a],a

gcd[0,b_] := b

fcoeff[0,bi = 0
scoeff[0,b] = 1
fcoeffIa,bl := scoeff[ mod[b,a],a ] - quotlb,ar fcoeff[ mod[b,a],a

scoeff[a,b] := fcoeff[ mod[b,a],a ]

provided we make changes to mod and quot so that they take polynomial (rather than

integer) remainders and quotients (this is easy to do in Mathematica and in most

programmable symbol manipulators).

Here's a sample Mathematica session that shows how this set-up might work:

In [1]; = gcd[ x° + x2 + 1, x3 + 1]; Out [1]= 1 x + x2

In [2]:= fcoeff x4 + x2 + 1, x3 + 1]; Out [2]-= 1;

In [3]:= scoeff [ x4+ x2 + 1,x3 + 1]; Out [3]= -x;

In [4]: = Simplify [ + x2 + 1 + -x (x3 + 1)]; Out 14]= 1 x + x2

The fact that the same computational models for arithmetic algorithms work for

integers and polynomials suggests that Z and, say, Q[x] have some structural similarities,

and looking into these similarities can lead students to some important abstractions. This

approach has been taken in several books (Sawyer 1959 and, more recently, Ireland and

Rosen 1982 and Dubinsky and Leron 1993, for example).
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There are also important differences between the integers and polynomials over a

field. Notice that the greatest common divisor of two polynomials as calculated by Euclid's

algorithm may not be identical to the result obtained by using the typical high school

method (factoring into primes), and the analysis of this fact leads to a consideration of the

units in Q[xl. It also points to needed modification in the recip functior.: We want the

product of a class modulo f and its reciprocal to be class(1,f), but our definition of recip:

recip[c1 := class[ fcoeff1 rep[c],modulus[c] ], modulus[c] 1

only guarantees that the product of a class c and its reciprocal will be the class

class (gcd(rep(c), modulus(c)), modulus(c) )

To remedy the situation, we redefine recip like this:

recip[c] class[(1 /gcd[rep[c],modulus[c]])

fcoeffl rep[amodulus[c] 1,modulus[c1]

Once this is done, students can investigate calculations in quotient rings of Q[x]; this

gives students a rich and varied collection of algebraic structures in which they can make

conjectures and establish results. Two short examples suggest the possibilities:

Units in rings. What are the units in Q[x] /f, Q[x]? The tht ry tells us that they are

precisely the elements g e Q[x] so that the reduction of g modulo f (and hence g itself) is

relatively prime to f in Q[x]. Seeing this as a calculation with polynomials adds a different

insight; supposa te. a ask our polynomial calculator for a generic formula for reciprocals

modulo x2-1:

In [1]: = Simplify Irecip[classia + bx, x2-1111; Out [1] = ((a - bx)/(a2 _b2)
1 + x2}

So, and element a + bx of Q[x] /(x2-11Q1x1 has a multiplicative inverse precisely when

b2. Lifting this result back to Q[x] yields the more traditional classification of units

modulo x2 1, and it also opens up many opportunities for a great deal of sense-making.

Extensions of fields. Suppose we reduce modulo a prime p in Q[x]. Then every

non-zero class has a multiplicative inverse, so the quotient ring is, in fact, a field. Indeed,

it's a field in which the class of p is 0. Kronecker used this construction to build root fields

for polynomials. Students can use their Mathematica models to go through exactly the

same process, with the added benefit that the rules for arithmetic in these splitting fields

can be found by performing generic calculations. Here's a Mathematics session that shows

how the rules for arithmetic in C can be found by calculating in R[x] /(x2 + 1 )R[x]:
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In [4]: = add[classla + bx, x' + 11, classic + dx, x2 + 111;

Out [41= {a + c + (b + d)x, 1 + x2}

In [51:= mult [class [a + bx, x2 + 11, class [c + dx, x2 + 1]];

Out [51= { ac bd + (bc + ad)x, 1 + x2}

In [61: = Simplify [recip [class [a + bx, + 1 ]]1;

Out [61= {(a bx')/(a2 b2) A x2}

In [7]; = class [x2, x' + 1]; Out 171, {-1, 1 + x2}

This example can be investigated without a very deep background, but it leads directly to

important ideas from field theory. As a bonus, students get to experience a genuinely big

idea in mathematics: reducing modulo a troublesome element or set is a general purpose

mechanism that can be used to force desirable properties on a structure.

This is Just. a Suggestion

The preceding section is only meant to give an example of one thread that can be

used to tie together high school algebra and abstract algebra. The thread is algebra as a

theory of calculation, the theme is arithmetic in Euclidean rings, and the major

computational medium is a programmable symbol Manipulator. The example has the

essential features that most students can jump onto the investigation (say, by studying

Euclid's algorithm and its consequences in arithmetic), there are several logical places to

jump off (depending on students' interests and inclinations), and, if taken far enough, the

investigation leads to substantial topics in abstract algebra.

There are certainly other examples. Another thread might be algebra as a titeory of

number systems and their extensions. Students might look at the problem of generating

Pythagorean triples (certainly a high school topic) by studying the properties of the norm

from Z[i] to Z. This could generalize to a search for triangles with integral sides and some

specified angle (a 60' angle connects to the ring of integers in the field of cube roots of

unity). And this could lead to a more general study of cyclothymic fields (an area that

well suited to computational investigations and that re-visits the algebra as calculation

thread), ruler and compass constructions, and special cases of Galois theory.

Organizing courses around examples like these would certainly require changes in

the precollege algebra curriculum, but it would also require changes in the approach to

abstract algebra in college. The major message in abstract algebra should be that

abstraction is an important and useful habit of mind. In order for this message to get to
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students, they need an experiential basis from which abstractions can be constructed, the

abstract algebra course has to draw on this basis, and the power of the abstractions have

to be an explicit part of the course.

Not everyone who studies algebra in high school goes to college, and not everyone

who studies algebra in college becomes an algebraist. As I read the charges for each of the

four working groups, I see a danger that "algebra for everyone" might become "different

algebras for different people." Maybe that's inevitable, but it just might be that there is a

small se of big ideas that gets at the essence of algebraic thinking. If that's the case, then

courses designed around these ideas, at appropriate levels of abstraction, and with

sensible support from computational media, would benefit students from elementary

through graduate school. Maybe there is one meaning for algebra. I think we should look

for it.
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Some Thoughts on Abstract Algebra

Susan Montgomery
University of Southern California

The paradox we currently face in teaching abstract algebra is that, even though

algebra is being applied in more ways in science and mathematics, and thus more people

need to learn algebra, our students are not as well prepared as before to handle proofs and

abstractions. For example, some recent applications include: the use of number theory in

cryptography, and of group theory, finite fields, lattice theory, linear algebra, and even

algebraic geometry in coding theory. Note the article in Science, October 29, 1993, on the

relationship between nonlinear codes and linear codes using ZI4Z. Of course groups and

Lie algebras have been important in physics for a long time.

However, our students now have even less experience with proofs than in previous

years. Once We did proofs in calculus; now only the bravest attempt this in most

universities. After that, it was still possible to remind the students that they had seen land,

one hoped, even done) proofs in plane geometry in high school. Now, however, proofs

have all but been abandoned in high school. I heard recently that one of the most popular

current higi school geometry texts contains only two proofs in the entire book. Some

reasons for this which I have heard is that students didn't understand what a proof was

anywaythey think it means a line down the middle of a page with statements on the left

and reasons on the rightand that it is more important to develop intuition. If a fact is

"obviously" true, why should it need a proof? The result of these new developments is that

it is entirely possible for a math major in your abstract algebra class never to have had to

prove anything before.

One consequence of this is that we spend so much time convincing the students

what a proof is that we don't get very far into the actual content of algebra. Some

students even struggle with the idea of a definition and how to verify that something

satisfies it. They end up feeling that the course is only about abstractions. And the

instructor, in desperation, chooses topics because the students are able to understand

them, or compute examples easily, rather than because these topics will be Important in

the long run (in future science or math courses) oi because they cre part of the
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fundamental methods or structure of algebra. I'm sure most of us are all too familiar with

this situation.

A related problem is the generally poor preparation of American students who do go

on to graduate school; they are typically a year or two behind the foreign students and

have to take remedial courses in algebra and analysis to catch up, if they ever do (there

was an article in UME Trends last year about such courses being instituted at Rutgers).

Given the trends described above, it is hard to believe that this will improve in the near

future. Thus, our problem is how to present the important ideas and techniques in algebra,

along with their abstract structure, and with a long-range view as to why these topics are

taught, to students who are less and less prepared to deal with the formalism.

I don't really have a solution for this, except to mention some things that have

worked for me. We have had a very successful course at USC in applied algebra for a

number of years, probably due to our strong groups in Computer Science doing

cryptography and in Electrical Engineering doing coding theory; in fact, their very best

students take our graduate algebra sequence. I've been using the book by Gilbert, which

seems like a very nice combination of algebra with applications. For example, the group

theory emphasizes group actions, including symmetry groups, the regular polyhedra, orbits

in oeneral, and Po lya-Burnside enumeration in particular (including applications to switching

circuits and chemistry); the methods are also applied to the usual group theory topics.

The population for this course has mostly been beginning graduate students in

engineering; the only prerequisite is advanced calculus, though in practice most students

have had linear algebra. The students seem to like the material and do fairly well, though

they are much more motivated than our typ'cal undergraduate student.

This year, I experimented with some of these topics in the undergraduate course,

using the new book by M. Artin. I used to think that group actions were too sophisticated

for this course; however, this turned out not o be true. I started out by considering actions

of the finite groups Cn and D as rotations and reflections of the plane. After asking the

students to draw the orbits of various points in the plane under these actions and then

asking them to find the stabilizers, they were then ready to believe that the product of the

number of elements in the orbit times the order of the stabilizer equaled the order of the

group. Then when I used this fact to prove. more abstract things like Cauchy's theorem,

they seemed to think it was a natural way to proceed. A miracle!
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Thus, this is one possible approach: introduce more concrete topics, including some

geometric reasoning, but with the end of giving them some intuition as to why tha more

general theory is natural.

Although I've been concerned here with abstract algebra, I'd also like to comment

on the importance of linear algebra. We have two levels of linear algebra at USC. The first

is the sophomore-level course, with applications to systems of linear differential equations,

which is really part of the calculus sequence, and the second is the advanced course which

usually follows a semester of abstract algebra. Although most of the students in the first

course are science and engineering majors, and consequently proofs are not emphasized

(though we do manage to put a few in!), never-the-less a student's performance in linear

algebra is the best predictor of success in abstract algebra, much more so than how well

they do in the rest of the calculus courses. I don't completely understand why this is so,

except that there is some abstract structure in the course, which forces the students to

organize the material in a new way. This suggests that more linear algebra in high school

might help the student to deal with abstractions later, and help compensate for the removal

of formalism in geometry.
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Suggestions for the Teaching of Algebra

William Yslas Velez
University of Arizona

As I looked over the material that was sent to me, I decided to focus in on three

different topics.

Sociology of the classroom,

Use of technology in the classroom, and

Course content.

Sociology of the Classroom

The notion that we have to have more cultural diversity in mathematics based

careers is a topic that has been given a great deal of press recently. It is an absolute

necessity that all individuals in this country have access to these careers. But how is this

lofty goal to be achieved? That is the real question.

I am not going to emphasize this question in this paper. I think that we have a more

basic problem in this country, namely, how can we attract all of our own children into the

study of mathematics? I have to admit that I do not have clear ideas as to how to

encourage our own children to avoid the culture of drugs and alcohol that is so pervasive in

this country and instead choose a more reflective lifestyle. Even as I write this sentence, I

am overcome by the ridiculousness of this statement. Our children are being taken away

from us by a culture of violence, and we appear almost powerless to entice them from this.

It is this point of view that flavors my comments. I am not going to focus on how to

attract those very bright children into the study of algebra. Instead, I want to think of how

we can attract all of our children into being mathematically literate, so that they will have

the opportunity to participate in the present technological revolut -in. I believe that this

task requires not only a rethinking of what it is that we teach but also how it is that we

present that material.

As I attempt to encourage the Chicano students in the Southwest to consider

mathematicsbased fields, I am struck by one fact. Whatever it is that I do to entice these

students into these studies has little to do with the fact that they share the same cultural

heritage as I, but rather it has everything to do with a simple dictum that my mother used
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to tell me, nab lando se entiende la gente, that is, "By speaking we make ourselves

understood." I do not think that the mathematics community has made a very concerted

effort to inform our populace that mathematics is not only an exciting field of study, but it

also leads to interesting careers that carry with them attractive monetary and intellectual

rewards. In order to emphasize this point, I would like to make some personal remarks.

I grew up in that poverty that was part of the culture of being a Chicanc in the

Southwest. This poverty and a Mexican-American up-bringing cleated culture shock as I

was forced to function in the American school system. There are differences in the

cultures, differences which sometimes make living together difficult. With this in mind,

allow me to recount the following incidents. On two separate occasions the following

occurred. I had called a colleague at his home in order to pick up a book or something. It

was agreed that I could come ovor and pick it up. Whir I I arrived the colleague opened the

door, told me that he would get the object for me, then closed the door in my face as he

retreated into his home to get the object. This person had invited me over and left me

standing outside. I was shocked by this behavior, and I have often told myself that no

Hispanic would behave in such an uneducated fashion as to leave a guest standing on

his/her doorstep. These two incidents have always stood out in mind as I have thought of

the interactions of the Mexican-American and the Anglo cultures. In the Mexican culture,

the term educed° carries with it not the implication of a formal education but rather the

connotation of a person who is cultured enough to treat others with dignity and respect.

From my own cultural perspective, I often felt that Anglo academics were not educados in

spite of their "education."

I mention these incidents for the following reasons. I believe that the community of

mathematics professors invites students into their classrooms and then closes the door and

leaves these students on the doorstep, mostly in shock and feeling demoralized. I am not

saying that Anglo professors leave minority students in the cold, though that may be true.

I am saying that mathematics professors leave most students there.

One of the reasons for this behavior is cultural. The mathematics profession is a

culture inhabited by mostly very bright people, or so we want the rest of the world to

think. In order to maintain this perception, we must behave in ways that would encourage

the population to believe this. We are rational human beings whose professional goals are

to think about this very difficult subject, mathematics. We teach our classes with a certain

224

r



aloofness so that students won't bother us. There is no question that there is a certain

facade to our profession, a facade that makes communication difficult.

But it is also true that we are abstract thinkers, and pretty good at it. In fact, those

who end up teaching mathematics at universities are the survivors of the training process

for the profession; they are the ones who are good at it. So how do we communicate this

to our students? Communicate what? This abstract think;ng is such a natural part of our

being that it does not occur to us most of the time to even think of this aspect of teaching.

Yet this is also a great cultural difference between ourselves, as professors, and the

students who must not only struggle with the new concepts but also with this new way of

thinking.

In summary, I would make the following recommendations:

Communication is the key to education. Besides teaching our students

we should take time to speak with them about mathematics and the

career opportunities for mathematics-based fields.

Our main job as teachers of mathematics is not to pass on to the

students a technique, but rather a point of view.

We should recognize that mathematicians are abstract thinkers, and

good at it. However, the student population is not as adept at it as

we are, and they must be trained.

We should attempt to teach the students who show up in our

classrooms. It is pointless to compare these students to the past or to

wish for the students of the future.

Technology in the Classroom

In the fall semester of 1992, I had the good fortune to teach first semester calculus

using the Harvard Calculus Consortium notes. The leading philosophy of the course is the

Rule of Three, that all ideas should be presented numerically, geometrically, and

analytically. This philosophy has made me think about how it is that I present material, and

it also forces me to think how it is that I could use technology to better present the

material. The profession has barely begun to scratch the surface here. I think that we are

at the beginning of a real revolution.

At the same time that I began to teach this course, I also began using the IBM

Personal Science Laboratory (PSL). The PSL connects to a computer in the classroom and
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allows the instructor to run experiments in the classroom. The data from these experiments

is projected onto a screen as the experiment is running. This provides an immediate

connection between the experiment and the data. The PSL comes with probes for

measuring distance, temperature, and light intensity, among others. The distance probe

allows one to measure the distance of a moving object. This piece of technology allows the

instructor to generate data immediately, display the data geometrically, and then fit a curve

to the data. This is a wonderful example of the Rule of Three.

If I am to- address the issue of technology in the classroom, then I cannot address

this issue in abstract terms, but rather I must discuss my own very limited experiences.

Knowing that I had the computer technology available for my first semester

Calculus class, I gave the following assignment to my students. I asked the students to

devise two experiments which I would be able to run using the PSL. One of the

experiments was to produce data that was linear and the other was to have data that was

quadratic. I fully expected that the quadratic data was to be very easy, simply drop a ball.

I was quite surprised to find that many of the students did not know that a falling object

should have a quadratic path. This assignment had been given more than halfway into the

course, and we had had a couple of homework problems dealing with a quadratic equation

modeling a falling body. Yet many of the students still had not internalized this fact. In

discussions that I had with the students, I found out that some thought that the data

should be exponential. But even here there was disagreement; some said that it should be

eikt), while others thought it should have the form a "(1-CI-kt)), where k is positive. I

was shocked, yet here was reality.

I corrected the students' thinking on this topic and pointed out that falling bodies

should have quadratic paths. So now students gave me all kinds of experiments, drop a

ball or bounce a ball off a wall. I pointed out that I had to be able to run the experiments in

the classroom, and dropping a ball would take less than three seconds, not enough time to

gather decent data. Besides, I didn't want to break the probe by dropping a ball on it.

Finally, we discussed rolling objects down an inclined plane. I told the students that they

had to bring in things to roll down. It was wonderful. Students brought in skateboards,

bowling balls, basketballs, and pairs of rolling skates tied together, but the results of the

experiments were disappointing. The data did not look quadratic enough. As a ball was let

go down an inclined plane, the data looked almost linear. I was panicking as I had the
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students looking at me as I ran these disappointing experiments in front of them, and then

it occurred to me! Why not roll the ball up the plane and let it come down. The data was

dramatic, a perfect parabola.

Though these experiments were in a Calculus class, I think it appropriate to discuss

them here, as we address the issue of presenting algebra. After all, a polynomial, one of

the basic ingredients of algebra, is being used to model a very real situation.

Though I have taught calculus and linear algebra courses that used either a graphics

calculator or used some specific software, I have not had enough experience to make solid

recommendations. I am convinced that the intelligent use of technology will serve to make

mathematics instruction more effective. I would hope that in the future all of our

mathematics courses have a laboratory associated to them.

Summarizing, I would make tne following recommendations:

The. mathematics community should aggressively seek new ways of

presenting the material. The use of technology in the classroom

should be encouraged at all levels of instruction.

Change does not necessarily occur spontaneously. Our faculty have

to be encouraged to seek new ways of instruction.

Content of Our Algebra Courses

Algebra is the study of structure, yet this is probably news to the undergraduate

student. To most of our students, algebra is equated with calculation, and this calculation

is the servant of science, not a subject of interest in itself. This same attitude is reinforced

in our Calculus classes.

We no longer teach structure in high school or in Calculus. Perhaps this is one of

the reasons that the transition from lower division mathematics to our abstract upper

division mathematics courses is so difficult. We emphasize calculations at the beginning of

the training of our mathematics undergraduates, and then change the rules on these

students when they make the transition to the upper division mathematics courses. These

lower division students think that they are doing well in their studies, only to find out that

the major that they chose has suddenly become almost unrecognizable to them as they

begin studying abstract and linear algebra and advanced calculus. We have tried to soften

this transition by introducing a proof course, but these courses have had little success.
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Perhaps the first instance in a student's career where structure cannot be ignored is

the study of differential equations. In many of these sophomore level courses, ideas from

linear algebra are introduced in order to be able to explicitly obtain solutions to classes of

differential equations. This infusion of linear algebra is not done because of the love of

algebra, but rather because the structure of the solutions can no longer be ignored.

it is my own belief that linear algebra is the most important upper division course

that a student can take. The methods and results of this subject pervade all aspects of

mathematics and its applications. The subject introduces itself early in the high school

curriculum, makes itself indispensable at the sophomore level, in a context completely

different form its nascency, and then, phoenix-like, rises again to motivate so much

graduate mathematics and applications. If we are looking for an algebra thread to weave

through a student's education, from high school through graduate studies, what better

than the subject of linear algebra?

One problem with linear algebra, at present, is that the subject almost dies through

three semesters of Calculus. Now here is a challenge. Is it possible to bring this subject of

linear algebra into our Calculus course in a meaningful way?

The other mainstay of algebra at the upper division level is, of course, modern

algebra. Many universities offer a two semester course in this subject. The first semester is

usually the standard course covering the topics of groups, rings, and fields. The second

semester can be more of the same abstract development or it can be a course in applied

algebra. I would prefer the second course for the following reason. For those students

taking a second course in abstract algebra, which would cover theoretical topics such as

Galois theory, I would ass'ime that these students are going on to graduate school. If so,

the students will cover this material in greater depth at a higher level, so why have two

semesters of this course? I would prefer a second course to cover a variety of applications,

for example, coding theory, cryptography, crystallographic groups, or finite fields. Perhaps

a second course could focus on algorithmic aspects of algebra, covering Grobner bases, for

example. Such an applied course has the benefit that it can draw in a wider audience and

attract students from engineering and computer science.

In summary, I would make the following recommendations:

College algebra should reflect the transition from our knowledge in

high school to a higher level of sophistication.
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Linear algebra should be the thread that goes through mathematics,

from high school through graduate school.

A course on the applications of algebra should be offered instead of a

second course in abstract algebra.

In all of these subjects, the use of technology should be pursued in

order to better present these abstract ideas.

It is laudable that we have attempted to make calculus more intuitive.

Proofs have been replaced ty an appeal to geometric intuition or

numerical calculations. Students leave calculus with a better

understanding of the basic ideas of calculus. Since most of our

calculus students will not go on to become mathematics majors, I

think that these students leave with a better understanding of

mathematics. However, some of these students will go on to take

upper division mathematics courses. In these upper division courses,

proof still reigns supreme. Proof is what makes our science. Proof is

our tool for sharpening our intuition and for carrying out our

investigations. Proof cannot be ignored. The challenge is then to find

a way of bridging the gap that exists between the way we present

lower division mathematics to the way we present upper division

mathematics.

229



Appendices

CI 4



UNITED STATES DEPARTMENT OF EDUCATION

OFFICE OF THE ASSISTANT SECRETARY
FOR EDUCATIONAL RESEARCH AND IMPROVEMENT

THE ALGEBRA INITIATIVE COLLOQUIUM
The Xerox Document University, Leesburg Virginia

December 9 through 12, 1993

Thursday evening, December 9, 1993

3:00 - 6:30 Registration

6:30 - 7:00 Cash Bar (Dining Room, Center Section)

7:00 - 9:00 Tracing the Development of Algebra and of Algebra
Education in the Schools

Dinner Session

Welcome & Introduction: Joseph Conaty, Director,
Office of Research, OERI

Speaker: Victor Katz, University of the District
of Columbia

Discussion

Charge to Participants: Carole Lacampagne, Office
of Research, OERI

9:00-9:30 Meeting of Working Group Chairs and At-Large
Participants

Friday, December 10, 1993

7:00 - 8:00 Breakfast

8:30 - 10:00 Creating an Appropriate Algebra Experience for all
K-12 Students (Room 3475 Red)

Speaker: James Kaput, University of Massachusetts
at Dartmouth

Responders: Gail Burrill, Whitnall High School,
Greenfield, Wisconsin

James Fey, University of Marylan0

Discussion
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10:00 - 10:30 Break

10:30 - 12:00 Working Group Sessions

Participants will meet with their assigned
groups for discussion of key issues

(Working
(Working
(Working
(Working

12:00 - 1:00 Lunch

1:30 - 3:00

Group
Group
Group
Group

1, Room
2, Room
3, Room
4, Room

3263 Yellow)
3461 Red)
3465 Red)
3463 Red)

working

Renewing Algebra at the College Level to Serve the
Future Mathematician, Scientist, and Engineer
(Room 3475 Red)

Speaker: Michael Artin, Massachusetts Institute
of Technology

Responder:

Discussion

3:00 3:30 Break

Vera Pless, University of Illinois
at Chicago

3:30 - 5:00 Working Group Sessions

Participants will meet with their assigned
groups for discussion of key issues

(Working
(Working
(Working
(Working

6:00 - 7:00 Dinner

Group
Group
Group
Group

1, Room
2, Room
3, Room
4, Room

3263 Yellow)
3461 Red)
3465 Red)
3463 Red)

7:00 - 8:30 Cross-cutting Panel and Discussion
(Room 3475 Red)

walking

Two representatives from each Working Group will
outline issues discussed in their Working Groups
that cut across Working Group boundaries. Whole
group discussion will follow.

8:30 - 9:00 Meeting of Working Group Chairs and At-Large
Participants
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Saturday, December 11, 1993

8:00 - 8:45 Breakfast

8:45 - 10:15 Reshaping Algebra to Serve the Evolving Needs of
the Technical Workforce
(Room 3475 Red)

Speaker: Henry Pollak, Teachers College, Columbia
University

Responder: Solomon Garfunkel, COMAP, Inc.

Discussion

10:15 - 10:45 Break

10:45 - 11:45 Working Group Sessions

Participants will meet with their assigned working
groups for discussion of key issues

(Working Group
(Working Group
(Working Group
(Working Group

11:45 - 12:30 Lunch

1:00 - 2:30

1, Room 3263 Yellow)
2, Room 3461 Red)
3, Room 3465 Red)
4, Room 3463 Red)

Educating Teachers, Including K-8 Teachers, to
Provide Appropriate Algebra Experiences for Their
Students
(Roczl 3475 Red)

Speaker:

Responder:

Alba Gonzalez Thompson, San Diego State
University

Marjorie Enneking, Portland State
University

Disc fission

2:30 - 3:00 Break

3:00 - 5:00 Working Group Sessions

Participants will meet with their assigned working
groups for discussion of key issues

(Working Group 1, Room 3263 Yellow)
(Working Group 2, Room 3461 Red)
(Working Group 3, Room 3465 Red)
(Working Group 4, Room 3463 Red)
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5:30 - 6:30 Dinner

7:00 - 8:30 Cross-cutting Groups

Representatives from each Working Group will meet
in four Cross-cutting Groups to outline issues
discussed in their respective Working Groups that
cut across Working Group boundaries.

(Cross-cutting Group 1, Room 3263 Yellow)
(Cross-cutting Group 2, Room 3461 Red)
(Cross-cutting Group 3, Room 3465 Red)
(Cross-cutting Group 4, Room 3463 Red)

8:30 - 9:00 Meeting of Working Group Chairs and At-Large
Participants

Sunday, December 12, 1993

8:00 - 8:45 Breakfast

8:45 - 9:45 Cross-cutting Working Groups Panel and Discussion
(Room 3475 Red)

Two representatives from each Cross-cutting
Working Croup will present the conclusions of
those working groups. Whole group discussion will
follow.

9:45 - 10:15 Break

10:15 - 11:45 Wrap up and Look to the Future
(Room 3475 Red)

Speaker: Lynn Steen, Mathematical Sciences
Education Board

Discussion

Where Do We Go From Here?

Discussant: Carole Lacampagne

11:45 - 12:30 Lunch

1:00 Bus departs for Dulles Airport from Plaza B

Please leave your room key at the registration
desk or at the key drop box provided at Plaza B.

236

X10I :0



Appendix B
Conceptual Framework for the Algebra Initiative

of the National Institute on Student Achievement,
Curriculum, and Assessment

Carole B. Lacampagne

Algebra is the language of mathematics. It opens doors to more advanced

mathematical topics for those who master basic algebraic concepts. It closes doors to

college and to technology-based careers for those who do not. Those most seriously

affected by lack of algebraic skills are students from minority groups. Moreover, advances

in the field of algebra, technology, in the needs of the work force, and in research on the

teaching and learning of algebra should profoundly affect what algebra is taught and how it

is taught and learned. Unfortunately, changes in the algebra curriculum and in its teaching

and learning do not manifest themselves frequently in the classrooms of America. The

proposed National Institute on Student Achievement, Curriculum, and Assessment initiative

will confront this current crisis in the learning and teaching of algebra at all levels,

kindergarten through graduate school.

Problem and Significance of the Initiative

Algebra is central to continued learning in mathematics. The position of the National

Council of Teachers of Mathematics and of the ensuing reform in mathematics recognizes

the need for restructuring algebra to make it part of the curriculum for all students.

Moreover, reform is just under way in college curriculum and teaching of mathematics,

including algebra. However, there is no coordinating mechanism to link all the groups

concerned with the content, teaching and learning, and research in algebra. It is the aim of

thu proposed Algebra Initiative to provide this coordinating mechanism.

Conceptual Framework

Four key constructs provide a ucmceptual framework for the National Institute's

Algebra Initiative:

Creating an appropriate algebra experience for all grades K -1 2 students;
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Educating teachers, including K-8 teachers, to provide these algebra

experiences;

Reshaping algebra to serve the evolving needs of the technical work for :e;

and

Renewing algebra at the college level to serve the future mathematician,

scientist, and engineer.

These constructs will be addressed in light of current and proposed advances in computer

technology that should seriously affect what algebra is learned in the 21st century, and

how it is taught.

Moreover, the uniqueness of the National Institute on Student Achievement,

Curriculum, and Assessment's Algebra Initiative is that these constructs will be dealt with

in toto; that is, the continuum of and branching of algebra across the gamut of potential

usersthose whose formal experience with algebra ends in high school through the

research mathematician.

Algebra for All Students
In its Curriculum and Evaluation Standards for School Mathematics, the National

Council of Teachers of Mathematics recommends algebra for all students, beginning in the

middle school years as a bridge between the concrete mathematics curriculum of the

elementary school and the more formal curriculum of the high school. Moreover, algebra is

to be part of a core curriculum in high school mathematics, to be taken by all students.

The National Center for Research in Mathematical Sciences Education's (NCRMSE)

Working Group on Learning/Teaching of Algebra and Quantitative Analysis is also re-

examining the place of algebra in a core quantitative mathematics curriculum. They are

looking to reform the algebra curriculum along such coherent mathematical ideas as

function and structure and to study the effect of such a curriculum on how teachers teach

algebra. They are looking at the reformed curriculum in light of advances in computer

software and technology which allow one to do many of the algorithmic and graphing

processes of algebra on a computer or sophisticated calculator.

Besides supporting the NCRMSE Working Group on Learning/Teaching of Algebra

and Quantitative Analysis, the U.S. Department of Education supports other algebra

initiatives including Robert Moses' Algebra Project, a pre-algebra project designed to bridge

the gap between arithmetic and algebra for minority students.
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The National Science Foundation is funding a variety of projects to develop

instructional materials in mathematics, K:12. Many of these materials include algebra

strands. One such materials development project addresses directly a core high school

mathematics curriculum which includes algebra. Several others have algebra strands

cutting across several grade levels. Still others stress algebraic applications to other

disciplines such as science and business.

Questions that need to be addressed include:

What algebra concepts should be part of the core mathematics curriculum for

all students?

How should they be taught and learned?

What is the role of technology in this curriculum and pedagogy?

How will these algebra concepts be tied into the needs of an educated citizen

and a technical worker?

How will they be related to the continuum of algebra in college and beyond?

How will they prepare students for lifelong learning in mathematics?

Algebra for Future School Teachers of Mathematics

With the teaching and learning of algebra moved down to the middle school years,

elementary school teachers now need a thorough understanding of the underlying concepts

of algebra, of how children understand/misunderstand basic algebra concepts, and of

pedagogical approaches suitable to helping children develop early algebra concepts. High

school teachers of mathematics need a new and different knowledge of algebra and

appropriate pedagogy. They need to understand the links between algebra and other fields

of mathematics as well as between algebra and its applications to the social, natural, and

physical sciences.

Thus, mathematics curriculum and pedagogy for future teachers of mathematics

need to be rethought in light of the changing role of algebra in the school curriculum. The

Mathematical Association of America recognizes the need for a different experience in

algebra for future school teachers of mathematics in its document A Call for Change:

Recommendations for the Mathematical Preparation of Teachers. However, much work is

needed to effect change in the algebraic education of future teachers.

Questions that need to be addressed include:

What algebra concepts and pedagogy should le fundamental to mathematics
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courses required of future elementary school teachers? middle school

teachers? high school teachers?

How can future teachers best acquire such knowledge and skills?

How can we enhance the algebraic and pedagogical skills of current

teachers?

Algebra for the Technical Work Force

The majority of U.S. students are leaving school ill-prepared in mathematical

problem solving, planning and optimizing, and mathematical modelingmathematical tools

needed in forward-thinking business and industry. All of the above areas are based on the

language and operations of algebra and all should play an important role in curricula

designed for those entering the technical work forcebe they products of high school

vocational education, 2-plus-2 plans, or 4-year college technical education curricula.

Emphasis here will be on developing curricula and pedagogy to equip students to meet the

demands of the 21st century work force and to provide the base for lifelong learning in

mathematics as technology shifts and careers change.

Questions to be addressed include:

What algebra concepts, beyond the core, do students preparing to enter the

technical work force need?

How should these concepts be tnught and learned?

What is the role of technology in such a curriculum and pedagogy?

How will these algebra concepts prepare students for continuing learning in

mathematics?

Can we circumvent the dreary sequence of remedial courses in arithmetic

and algebra that many community college students must take?

Algebra for the Future Mathematician, Scientist, and Engineer

Algebra is the language of mathematics. Just as school algebra allows students to

communicate mathematically, to model problems and to solve them, its extensions, linear

and abstract algebra form a basis for many areas of mathematics: group theory, ring

theory, algebraic topology, and algebraic number theory, to name a few. Basic knowledge

of linear and abstract algebra concepts are required of all college mathematics majors, and

a deeper understanding of these concepts are required of n11 serious users of mathematics.
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Recent developments in computer software have made complex matrix manipulation,

graphing, and object manipulation quicker and have enabled further developments in

several areas of algebra.

Key questions to be considered include:

How should the transition from school algebra to the advanced algebra

concepts taught in college be accomplished?

How can we help students develop mathematical maturity and smooth their

transition into a first proof course?

What advanced algebra concepts should form the core of the collegiate

mathematics major? for the graduate degree in mathematics?

How should these concepts be taught and learned?

What is the role of technology in such a curriculum and pedagogy?

What research opportunities in algebra can be afforded students in their

undergraduate and early graduate experience in mathematics?

How will these algebra concepts prepare students for employment outside of

academia?

Action Plan

The action plan for the National Institute on Student Achievement, Curriculum, and

Assessment's Algebra Initiative includes:

A 3 1/2 day invitational colloquium;

A widely distributed summary document for policymakers and teachers on

the major issues discussed at the colloquium;

A complete Proceedings of the colloquium to be distributed to the

mathematics and mathematics education communities;

A 2-year discretionary grant solicitation for a Linking Algebra project; and

The linking of other initiatives, both within the Department of Education and

across other federal agencies, to what is learned from the Algebra Initiative.

Invitational Colloquium

The National Institute on Student Achievement, Curriculum, and Assessment's

Algebra Initiative will begin with a 3 1/2 day invitational colloquium on algebra involving

about 40 key players from NCRMSE, the Algebra Project, principal investigators from

NSF's algebra materials development and research projects, college teachers of algebra,
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and mathematics and mathematics education researchers plus additional mathematics

experts from federal agencies. Carole Lacampagne will run the colloquium in coordination

with William Blair, James Kaput, and Richard Lesh.

Summary Document

A report writer with experience in writing articles about mathematics will be hired to

write a short document for policymakers and teachers based on issues raised at the

colloquium. This document will be distributed widely within 4 months of the colloquium.

Proceedings

All speakers, discussants, and participants in the colloquium will be asked to submit

papers to be published in a Proceedings. This document will be distributed to the

mathematics community.

Further dissemination of knowledge gained through the colloquium will occur at

workshops, minicourses, and talks on algebra given at annual meetings of the National

Council of Teachers of Mathematics, the Society for Industrial and Applied Mathematics,

and at semiannual joint meetings of the Mathematical Association of America, and the

American Mathematical Society.

Two-year Discretionary Grant Solicitation for a Linking Algebra Project

It is anticipated that the Department of Education, perhaps in collaboration with

other federal agencies, will fund a Linking Algebra project organized around the four key

constructs of the colloquium to extend the concepts of, embark on research in, and

prepare for implementation in schools and colleges knowledge gained in the colloquium.

It is anticipated that the Algebra Initiative through taking the broad view of algebra,

from the teaching and learning of algebra in the elementary school through breakthroughs

in research, will spur teachers of mathematics, teachers of teachers of mathematics, and

the mathematics and mathematics education communities to coordinate and extend the

role of algebra for all learners and users of mathematics.

242

1) )
4.11



Appendix C
Participant List

Working Group 1: Creating an Appropriate Algebra Experience For All K-12
Students

Invited Participants

Diane Briars
Pittsburgh Public Schools
Pittsburgh, PA

Gail Burrill, WG1 Reactor
Whitnall High School
Greenfield, WI

Daniel Chazan
Michigan State University
East Lansing, MI

Robert Davis
Rutgers University
New Brunswick, NJ

James Fey, WG1 Reactor
University of Maryland
College Park, MD

Rogers Hall
University of California
Berkeley, CA

James Kaput, WG1 Speaker
University of Massachusetts at Dartmouth
North Dartmouth, MA

Robert Moses
The Algebra Project, Inc.
Cambridge, MA

Betty Phillips
Chair, NCTM Algebra Task Force
East Lansing, MI
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Alan Schoenfeld, WG1 Chair
University of California, Berkeley
Berkeley, CA

Zalman Usiskin
University of Chicago
Chicago, IL

Federal Participants

Eric Robinson
National Science Foundation
Arlington, VA

Charles Stalford
U.S. Department of Education
Washington, DC

Working Group 2: Educating Teachers, Including K-8 Teachers, to Provide These
Algebra Experiences

Invited Participants

Alphonse Buccino, WG2 Chair
University of Georgia
Athens, GA

Suzanne Damarin
The Ohio State University
Columbus, OH

Marjorie Enneking, WG2 Reactor
Portland State University
Portland, OR

Naomi Fisher
University of Illinois at Chicago
Chicago, IL

Guershon Harel
Purdue University
West Lafayette, IN
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Alba Gonzalez Thompson, WG2 Speaker
San Diego State University
San Diego, CA

Federal Participants

Clare Gifford Banwart
U.S. Department of Education
Washington, DC

Henry Kepner
National Science Foundation
Arlington, VA

James Pratt
Johnson Space Center
Houston, TX

Cindy Musick
U.S. Department of Energy
Washington, DC

Tina Straley
National Science Foundation
Arlington, VA

Working Group 3: Reshaping Algebra to Serve the Evolving Needs of the Technical
Workforce

Invited Participants

Paul Davis
Worcester Polytechnic Institute
Worcester, MA

Susan Forman, WG3 Chair
Mathemai cal Sciences Education Board
Washington, DC

Solomon Garfunkel, WG3 Reactor
COMAP, Inc.
Lexington, MA
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James Greeno
Stanford University
Stanford, CA

Richard Lesh
Educational Testing Service
Princeton, NJ

Patrick Mc Cray
G D Searle & Co.
Evanston; IL

Henry Pollak, WG3 Speaker
Columbia University
New York, NY

Thomas Romberg
University of Wisconsin-Madison
Madison, WI

Susan S. Wood
J. Sargeant Reynolds Community College
Richmond, VA

Federal Participants

Elizabeth Teles
National Science Foundation
Arlington, VA

Donna Walker
U.S. Department of Labor
Washington, DC

Working Group 4: Renewing Algebra at the College Level to Serve the uture
Mathematician, Scientist, and Engineer

Invited Participants

Michael Artin, WG4 Speaker
Massachusetts Institute of Technology
Cambridge, MA

William Blair
Northern Illinois University
De Kalb, IL
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John Conway
Princeton University
Princeton, NJ

Al Cuoco
Education Development Center
Newton, MA

Joseph Gallian, WG4 Chair
University of Minnesota-Duluth
Duluth, MN
Cleve Moler
Chair, The Mathworks, Inc.
Shei-born, MA

Susan Montgomery
University of Southern California
Los Angeles, CA

Vera Pless, WG4 Reactor
University of Illinois at Chicago
Chicago, IL

William Velez
University of Arizona
Tucson, AZ

Federal Participants

Ann Boyle
National Science Foundation
Washington, DC

Charles F. Osgood
National Security Agency
Ft. George G. Meade, MD

Joan Straumanis
U.S. Department of Education
Washington, DC

At-Large Participants

Victor Katz, Keynote Speaker
University of the District of Columbia
Washington, DC
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Lynn Steen, Wrap-up Speaker
Mathematical Sciences Education Board
Washington, DC

Carole Lacampagne, Colloquium Convener
U.S. Department of Education
Washington, DC

Barry Cipra, Scientific Writer
Northfield, MN
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